Help me check my solutions, please!

  • #1
217
0
The power output of a particular type of solar panel varies with the angle of the sun shining on the panel. The panel outputs P (θ) watts when the angle between the sun and the panel is θ for 0 ≤ θ ≤ π. On a typical summer day in Ann Arbor, the angle between a properly mounted panel and the sun t hours after 6 a.m. is θ(t) for 0 ≤ t ≤ 14. Assume that sunrise is at 6 a.m. and sunset is 8 p.m.

(A) Calculate dP/dt using the chain rule, and give interpretations for each part of your calculation.

P(θ(t)). So, dP/dt = P(θ(t))' = P'(θ(t)) * θ'(t)
P'(θ(t)) is the average rate of change of power with respect to θ.
θ'(t) is the average rate of change of θ with respect to t.

(B) Suppose θ(t) = arcsin(t/7 -1) + π/2. Calculate θ'(t) using the equivalent expression: sin(θ(t) - π/2) = t/7 - 1

I just differentiated the equivalent function:

cos(θ(t) - π/2)*θ'(t) = 1/7
θ'(t) = 1/(7*cos(θ(t) - π/2))

(C) Suppose dP/dθ (2π/3) = 12 and θ(t) is the function in part (B). Find the change in power output between 4:30PM and 5:30PM.

This is where I'm having trouble. I would think the "change in power output" would simply be dP/dθ, since this represents the change in power with respect to θ, but I feel as though I'm incorrect here. Any help would be awesome. Thanks!
 

Answers and Replies

  • #2
72
0
Change in power output is dP/dt here.
 

Related Threads on Help me check my solutions, please!

  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
5
Views
978
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
2
Views
1K
Replies
23
Views
3K
Replies
0
Views
1K
Replies
2
Views
876
Replies
1
Views
3K
Replies
3
Views
1K
Top