Help me understand events/sample space

  • Thread starter r0bHadz
  • Start date
  • #1
194
17

Homework Statement


1.

Suppose that A, B, and C are 3 independent events such that Pr(A)=1/4, Pr(B)=1/3 and Pr(C)=1/2.

a. Determine the probability that none of these events will occur.

Is it just:

(1-P(a))(1-P(b))(1-P(c)) = 3/4 * 2/3 * 1/2 = 1/4



Homework Equations




The Attempt at a Solution


I tried to do 1. another way:

The probability that all theses events will occur: 1/4 * 1/3 * 1/2 = 1/24

1-(1/24) = 23/24

Obviously this is wrong. Is the reason it is wrong, because: the complement of "all of these events will occur" is that "not all of these events will occur," meaning, it is not "none of these events will occur."

None of these events will occur is included in the compliment 1-(1/24), but so is that 1 of the events occur, and that 2 of the events occur, etc.

Am I right in my reasoning?
 

Answers and Replies

  • #2
494
197
the (1) is correct.
for reference, in general the answer can be found by calculating multinomial distribution.
in (3), the 23/24 probability is sum of "no events", "A only", "B only", "C only", "A&B", "A&C", "B&C".
 
  • #3
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2020 Award
18,621
10,271

Homework Statement


1.

Suppose that A, B, and C are 3 independent events such that Pr(A)=1/4, Pr(B)=1/3 and Pr(C)=1/2.

a. Determine the probability that none of these events will occur.

Is it just:

(1-P(a))(1-P(b))(1-P(c)) = 3/4 * 2/3 * 1/2 = 1/4



Homework Equations




The Attempt at a Solution


I tried to do 1. another way:

The probability that all theses events will occur: 1/4 * 1/3 * 1/2 = 1/24

1-(1/24) = 23/24

Obviously this is wrong. Is the reason it is wrong, because: the complement of "all of these events will occur" is that "not all of these events will occur," meaning, it is not "none of these events will occur."

None of these events will occur is included in the compliment 1-(1/24), but so is that 1 of the events occur, and that 2 of the events occur, etc.

Am I right in my reasoning?

Yes, that's it exactly.
 
  • #4
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,722

Homework Statement


1.

Suppose that A, B, and C are 3 independent events such that Pr(A)=1/4, Pr(B)=1/3 and Pr(C)=1/2.

a. Determine the probability that none of these events will occur.

Is it just:

(1-P(a))(1-P(b))(1-P(c)) = 3/4 * 2/3 * 1/2 = 1/4



Homework Equations




The Attempt at a Solution


I tried to do 1. another way:

The probability that all theses events will occur: 1/4 * 1/3 * 1/2 = 1/24

1-(1/24) = 23/24

Obviously this is wrong. Is the reason it is wrong, because: the complement of "all of these events will occur" is that "not all of these events will occur," meaning, it is not "none of these events will occur."

None of these events will occur is included in the compliment 1-(1/24), but so is that 1 of the events occur, and that 2 of the events occur, etc.

Am I right in my reasoning?

You are correct, and there is sound reasoning to justify that fact, as follows. If we denote the complement of any event ##E## as ##\bar{E}##, then
$$
\{ \text{none occur} \} = \overline{A \cup B \cup C},$$
because the event that at least one occurs is ##A \cup B \cup C,## so the complement of that is the event that none occurs.

However, there is a general set-theoretic result:
$$\overline{ \bigcup_{i=1}^n A_i } = \bigcap_{i=1}^n \overline{A_i}$$ That is, the complement of a union is the intersection of the complements.
 

Related Threads on Help me understand events/sample space

  • Last Post
Replies
14
Views
2K
  • Last Post
Replies
1
Views
12K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
3
Views
820
  • Last Post
Replies
5
Views
744
Replies
9
Views
861
  • Last Post
Replies
8
Views
11K
  • Last Post
Replies
16
Views
5K
Replies
8
Views
912
Top