# HeLp: Surface Integral

#### defang

Here is the question:

Evaluate the surface integral ∫∫s (X^4 + Y^4 + Z^4) dσ, where dσ is the surface element and S = { (X,Y,Z) : X^2 + y^2 + Z^2 = 1}

I know you have to take the square root of 1 + (dz/dx)^2 + (dz/dy)^2 dxdy. And I got -2X/2Z and -2Y/2Z, respectively. Then, I must incorporate this into Stoke's. Can anyone tell me what to do next? The answer to the quesion -2pi/5. THANKS!

#### mathman

Science Advisor
How do you get a negative answer to an integral where the integrand is positive?

#### saltydog

Science Advisor
Homework Helper
Hello Defang. Welcome to PF. This is what I have:

$$g(x,y,z)=x^4+y^4+z^4$$

$$S=\{(x,y,z):x^2+y^2+z^2=1\}$$

So, we're going to integrate g over a sphere at the origin with radius 1. Since everything is spherically symmetrical, let's just cut it in half and just do the top part:

$$I=2\int\int_K (x^4+y^4+z^4)ds$$

where K is the surface above the x-y plane described by the function:

$$K=z(x,y)=\sqrt{1-x^2-y^2}$$

Now, the projection of this surface onto the x-y plane is just the circle:

$$R=x^2+y^2+1$$

It is over this area that we'll integrate using the standard formula:

$$I=2\int\int_R g(x,y,z(x,y)) \sqrt{(z_x)^2+(z_y)^2+1} dA$$

#### saltydog

Science Advisor
Homework Helper
Defang, I now suspect the function:

$$g(x,y,z)=x^4+y^4+z^4$$

is not spherically symmetrical. Can someone confirm this? If so then my analysis above is not correct. Sorry.

Last edited:

#### saltydog

Science Advisor
Homework Helper
You know, sometimes its good just to keep your mouth shut. Unfortunately for me that doesn't work in math: better to get in trouble if that's what it takes to get the problem straight in my head. I now believe the top hemisphere of the function is symmetrical with the bottom part in which case the analysis above WOULD work.

Can someone please provide another opinion about this? I'd like to see the problem completed not to mention attempt to solve it numerically and compare the results.

#### saltydog

Science Advisor
Homework Helper
saltydog said:
You know, sometimes its good just to keep your mouth shut. Unfortunately for me that doesn't work in math: better to get in trouble if that's what it takes to get the problem straight in my head. I now believe the top hemisphere of the function is symmetrical with the bottom part in which case the analysis above WOULD work.

Can someone please provide another opinion about this? I'd like to see the problem completed not to mention attempt to solve it numerically and compare the results.
Alright, go ahead, say it:

$$g(x,y,a)=g(x,y,-a)$$

I'm outta' here . . .got some french toast to make . . .

#### defang

Thanks saltydog. Then, I have 0 ∫ 2pi 0 ∫ 1 (r^4 + √ 1-r^2) (√1 + 4r^2) r dr dθ. Is this correct? If it is correct, any tips on how to solve this integration?

#### rachmaninoff

"[ tex ] \int_0^{2 \pi} \int_0^1 \left( r^4 + \sqrt{1 - r^2} \right) \left( \sqrt{1 + 4r^2} \right) r \; dr \; d \theta [ /tex ]"

$$\int_0^{2 \pi} \int_0^1 \left( r^4 + \sqrt{1 - r^2} \right) \left( \sqrt{1+4r^2} \right) r \; dr \; d \theta$$

edit to add link: https://www.physicsforums.com/showthread.php?t=8997&page=1

Last edited by a moderator:

#### rachmaninoff

$$r^4 = \left( x^2+y^2+z^2 \right) ^2 \neq x^4+y^4+z^4$$

#### rachmaninoff

Here's my attempt, which is different from saltydog's:

$$\left( x^2 + y^2 + z^2 \right) ^2 = x^4 + y^4 + z^4 + x^2 \left( y^2 + z^2 \right) + y^2 \left( x^2 + z^2 \right) + z^2 \left( x^2 + y^2 \right)$$

Spherical substitution:
\begin{align*} &x=R \sin \theta \cos \phi \\ &y = R \sin \theta \sin \phi \\ &z = R \cos \theta \end{align}

Which gives us:
\begin{align*} x^4 + y^4 + z^4 &= \left( x^2 + y^2 + z^2 \right) ^2 - x^2(y^2+z^2) - y^2(x^2+z^2) - z^2(x^2+y^2) \\ &= R^4 - 2x^2y^2 - 2x^2z^2 - 2y^2z^2 \\ &= R^4 \left( 1 - 2 \sin^4 \theta \cos^2 \phi \sin^2 \phi - 2 \sin^2 \theta \cos^2 \theta \cos^2 \phi - 2 \sin^2 \theta \cos^2 \theta \sin^2 \phi \right) \\ &= R^4\left( 1 - 2 \sin^4 \theta \cos^2 \phi \sin^2 \phi - 2 \sin^2 \theta \cos^2 \theta \left( \cos^2 \phi + \sin^2 \phi \right) \right) \\ &= R^4\left( 1 - 2 \sin^4 \theta \cos^2 \phi \sin^2 \phi - 2 \sin^2 \theta \cos^2 \theta \right) \end{align}

So $$g(R, \theta, \phi ) = R^4 \left( 1 - 2 \sin^4 \theta \cos^2 \phi \sin^2 \phi - 2 \sin^2 \theta \cos^2 \theta \right)$$

And the integral we want is
$$\int_0^{2 \pi} \int_0^{\pi} g(1, \theta, \phi) dS = \int_0^{2 \pi} \int_0^{\pi} \left( 1 - 2 \sin^4 \theta \cos^2 \phi \sin^2 \phi - 2 \sin^2 \theta \cos^2 \theta \right) \sin \theta \; d \theta \; d \phi$$

Last edited by a moderator:

#### rachmaninoff

Just to be sure, you did mean

$$\iint_S x^4 + y^4 + z^4 \; dS$$

and not

$$\iint_S x^4 \hat{i} + y^4 \hat{j} + z^4 \hat{k} \; dS$$

right?

#### saltydog

Science Advisor
Homework Helper
Guys . . . I got:

$$\frac{12\pi}{5}$$

I mean, if I'm wrong I want to be right Ok. What did you get?

#### rachmaninoff

My calculator tells me its

$$\frac{13 \pi^2}{16}$$

but it's old and the batteries are low, so it could be wrong.

#### rachmaninoff

Oops! I entered it wrong! The answer is more likely to be

$$\frac{17 \pi}{5}$$.

#### saltydog

Science Advisor
Homework Helper
I don't know Rachmaninoff. Suppose I'll go over my work. How about you Defang? I just converted the integral to polar coordinates and plugged it into Mathematica and multiplied by 2.

#### rachmaninoff

okay... what's your final integral look like? mine was derived above.

-rachmaninoff

#### saltydog

Science Advisor
Homework Helper
rachmaninoff said:
okay... what's your final integral look like? mine was derived above.

-rachmaninoff
Here it is:

$$\int_0^{2\pi}\int_0^1(\frac{r^5Cos^4(\theta)}{\sqrt{1-r^2}}+\frac{r^5Sin^4(\theta)}{\sqrt{1-r^2}}+\frac{r(1-r^2)^2}{\sqrt{1-r^2}})drd\theta$$

That's just the top part. Multiply by 2 to get the answer I got (via Mathematica)

#### saltydog

Science Advisor
Homework Helper
Well, I hate to be a pain but I request some closure in this matter. Now:

Rachmaninoff said:

$$\frac{17\pi}{5}$$

I said:

$$\frac{12\pi}{5}$$

Now, I'm pretty sure mine is correct. So sure, I'd bet a dollar. But Rachmaninoff feels otherwise and I've followed his other postings; he's very good so I'm worried. Can someone supply a third opinion?

Thanks,
Salty

#### defang

Indeed, after what looked like endless calculation, I have finally got an answer: 12pi/5 (still learning this LaTex program). 2 0 ∫ 2pi 0∫1 [ r^4 (3/4 + 1/4 cos4θ ) + (1-r^2)^2 ] 1/(√1-r^2) r dr dθ. saltydog & rachmaninoff, thanks for your help!

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving