Help with contour integrals!

  • Thread starter quasar_4
  • Start date
  • #1
290
0

Homework Statement



Show that [tex]\int[/tex] [tex]\frac{ln(x) dx}{x^{3/4} (1+x)}[/tex] = - [tex]\sqrt{2}[/tex] Pi^2

Homework Equations



Residue theorem - integral = 2*Pi*i * sum of residues

The Attempt at a Solution



I am so lost. I don't even know where to start. I don't understand how to construct my contour. I'm not sure what I'm supposed to avoid. I don't understand how they're finding the residue. I don't get anything about this. Except that I think (!) I can show that |z*f(z)| goes to 0 as z--> 0 and --> 0 as z --> infinity. They do this in the book, but I don't really understand why (something to do with contour radii disappearing in extreme limits). I really need a better text (we have a review book that has a PAGE on this, so it's not enough, but I don't know what books are good).

All I can think of is do some kind of substitution where z = exp(i*theta), but I don't know beyond that... the examples in my book are very confusing. I really need help. My professor is out of the country for a few weeks and gave us this to work on. I don't know what to do without being able to get help :cry:

Any help, even just pointing to a good lucid text, would be so appreciated. This is a physics class, not a math class, so it would have to be reading that was clear enough to someone without complex analysis background. Thanks!
 

Answers and Replies

Related Threads on Help with contour integrals!

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
2
Views
819
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
956
  • Last Post
Replies
22
Views
2K
  • Last Post
2
Replies
31
Views
4K
Replies
1
Views
1K
  • Last Post
Replies
15
Views
2K
Replies
4
Views
1K
Top