(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Prove that the equations [itex]x=acos(\theta)[/itex] and [itex]y=bcos(\theta +\delta )[/itex] is the equation of an ellipse and what angle does this ellipse's major axis make with the x axis?

2. Relevant equations

Equation of an ellipse is [itex]x=acos\theta, y=asin\theta[/itex]

Rotation matrix is for a rotation by [itex]\psi[/itex] is [tex]A=\begin{pmatrix} cos\psi & -sin\psi \\ sin\psi & cos\psi \end{pmatrix}[/tex]

3. The attempt at a solution

I know the special case of [itex]\delta = \pi/2[/itex] is easy but I cannot do it for arbitrary [itex]\delta[/itex]. I worked out what an ellipse whose major axis forms an angle [itex]\psi[/itex] with the x axis looks like. I did this by applying a rotation matrix to the standard equation [itex]x=acos\theta, y=bsin\theta[/itex]

This gives [itex]x= acos\theta cos\psi - bsin\theta sin\psi[/itex] and [itex]y= acos\theta sin\psi + bsin\theta cos\psi [/itex]

Now, what is the relation between [itex]\psi[/itex] and [itex]\delta[/itex] in general. And I need to show that the equations [itex]x=acos(\theta)[/itex] and [itex]y=bcos(\theta +\delta )[/itex] can be brought to the same form as [itex]x= acos\theta cos\psi - bsin\theta sin\psi[/itex] and [itex]y= acos\theta sin\psi + bsin\theta cos\psi [/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Help with ellipse geometry

**Physics Forums | Science Articles, Homework Help, Discussion**