(adsbygoogle = window.adsbygoogle || []).push({}); Problem:

Let X be a locally compact Hausdorff space, Y a subspace. Show that the quotient space X/Y is a Hausdorff space.

My attempt at a solution:

I don't have a solution. I cannot connect a Hausdorff space with a quotient space.

Since X is compact Hausdorff x,y [tex]\in[/tex] X s.t. x and y can be seperated by neighborhoods if [tex]\exists[/tex] a neighborhood U of x and V of y s.t. U /\ V = [tex]\phi[/tex]. Now, somehow this implies that, for open sets U, the [tex]\bigcup[/tex] U [tex]\subset[/tex] X are disjoint.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Help with Hausdorff spaces

**Physics Forums | Science Articles, Homework Help, Discussion**