Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Higgs boson

  1. Dec 6, 2007 #1
    The Higgs boson introduced by P. Higgs (insert --> the spontaneous symmetry breaking with the gauge theories was also constructed by Robert Brout & Francois Englert) one question I have is on the dynamics involved dealing with this concept.

    Could someone please explain the properties/mechanics of the Higgs particle in oder for them to recognize one? I believe that CERN/LHC will go online in 2008 is this a realistic projection.

    Cheryl :smile:
    Last edited: Dec 6, 2007
  2. jcsd
  3. Dec 7, 2007 #2
    Hi Cheryl, this is my understanding of how this works:

    The Higgs is one of those particles that can't be detected directly because it will not tend to survive long enough to hit a detector. This is okay because we can calculate, when the particle decays, what it decays into. So if you look in the right places, you will find descriptions of the various paths for "production" of various kinds of particles. The idea is that at a certain energy scale there are a certain number of ways a Higgs could come into being, and a certain number of things that are likely to happen when a Higgs is produced. Since we know a lot about the Higgs, we can calculate ahead of time what those things will be.

    I can't find right now a description of the paths we'll likely see at the LHC, but here's a description of how they're looking for the Higgs at the Tevatron, from the blog of a scientist there, which should give you a rough idea.

    The short version of the Tevatron description as I'm reading it is: the Tevatron particles crash, and the energy of that crash could produce a number of things. Among the things it could produce is a Higgs, or it could also produce a W Boson and a Higgs, or maybe a Z Boson and also a Higgs. Meanwhile, once the Higgs comes into being, it will last for a certain amount of time, after which it could decay into a b-quark and a b-anti-quark, or it could decay into a pair of W bosons. Of course, the W bosons and such aren't directly observable either! They decay into other things... some of which decay into other things... eventually, all this decaying is done, and the particles that are left over are long-lived ("long-lived" meaning "long enough to travel a a few feet away to the detector") things like neutrinos. THESE are the things that the detector detects!

    So basically, you're running this detector. With each collision you get a weird smattering of particles hitting the detector, and for each particle your detector registers things like its energy, its angle, whatever. And you sit down with a mathematical model that has a long, long list of all the different things that could possibly be produced in a collision; and for each of those things that could be produced, it has a list of "decay channels" (or in other words, a list of final states, saying for example that after all the decaying is done, you'll get 4 particles of this type arriving at these sorts of angles at this time, and then 3 particles of this other type arriving... etc). Each of these productions will have a different probability, and each decay channel/final state will have a different probability of resulting from its initial particle production.

    So you try to match up the things your detector found, with these final states. Because so much of your model is based on probabilities, you have to do this statistically-- you have to measure a huge number of events, and then you measure whether the number of events of each type that you saw was close to the number of events of each type that your model predicts will occur on average. You ask, was the final tally of events closer on average to what the model tells us we'd see if no Higgs are being produced? Or is it closer to what the model tells us we'd see if the Higgs was being produced? Or is something else entirely happening?

    Does that all make sense? I am pretty sure if you look around you could find a more specific description of the decay channels that the LHC itself will be looking for. (Dorigo links this site which supposedly contains some kind of catalog of decay channels for different kinds of particles, but I can't quite seem to find that data...)
  4. Dec 7, 2007 #3
    Thank you very much for the time you have taken in explaining. It was very clear, and understandable for this I am grateful.

    Please let me read the information given and will be in contact after. This is very important to me resulting from a paper I am working on my advisor has been helpful, yet I would like to see what other direction can be taken dealing with Higgs is possible if any?

    Now I must do my part in researching what you have explained, and the references shared.
    Last edited: Dec 7, 2007
  5. Dec 7, 2007 #4
    Cheryl, okay, good luck. For the record you might have slightly better luck asking about such things in this forum's HEP and particle physics board. (Remember, the Higgs Boson is not technically "beyond the standard model" since the traditional single-Higgs mechanism is a fundamental part of the standard model.)
    Last edited: Dec 7, 2007
  6. Dec 7, 2007 #5
    Coin, I understand and I will take your advice in posting. Being new I hope I have not caused any problems for this thread & your direction is very appreciated.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Higgs boson
  1. Higgs boson (Replies: 17)

  2. Higgs boson question (Replies: 1)