Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Higgs, top production

  1. Jun 8, 2016 #1

    MMS

    User Avatar

    Hello

    What possible processes are there for a production of Higgs from t-tbar?

    Thanks you in advance
     
  2. jcsd
  3. Jun 8, 2016 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    What do you mean by "from t-tbar"? There is no t-tbar collider, but direct production would be possible and by far the dominant process.

    Google and arXiv search should show all the relevant production modes for every process. In general, it's not about what is possible, but what is frequent enough to be relevant.
     
  4. Jun 8, 2016 #3

    MMS

    User Avatar

    Hi and thanks for the reply.

    I will try being more clear about what I'm asking. To my knowledge and from what I learned, in the LHC t quarks are formed in pairs of t tbar. Since they're massive, they decay before they're able to hadronize and we have processes such as
    MI7Gj4x.png
    or
    MI7Gj4x.png
    or
    MI7Gj4x.png

    Now, I want to know which possible processes are there for a production of Higgs (along with other particles) from a pair t tbar.
    I hope this has made it a little more clear.
     
  5. Jun 8, 2016 #4

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    A top can radiate a Higgs boson, but that is a very unlikely process.

    Decays like top -> H + charm are forbidden (at tree level) in the standard model, experiments look for them to set exclusion limits or (ideally) find such a process.

    The production of a t-tbar pair together with a Higgs (lower left process, not from top decays) is much more likely. Summary of searches
     
  6. Jun 8, 2016 #5

    ChrisVer

    User Avatar
    Gold Member

    One small remark, since the main Q was already answered:

    Well you can have the formation of single tops too...[formation via weak interaction]
    And for pp colliders, you have ~2 times more single tops than antitops...


    Also what's the difference in the ttbar decays you posted?
     
  7. Jun 9, 2016 #6

    MMS

    User Avatar

    That I uploaded the wrong images. :P
    The decays i was talking about are
    zlI7uHr.png
    or
    7Yrx9ZC.png
    or
    QzJKcBe.png

    While I'm at it, how would a Feynman diagram look for, say, the first ttbar decay?
     
  8. Jun 9, 2016 #7

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    There is also ##t \bar t \to b \bar b q \bar q q \bar q## but it is a tricky channel experimentally.
    Both top decay to Wb, the W then decay either to lepton+neutrino or quark+antiquark.
     
  9. Jun 11, 2016 #8

    MMS

    User Avatar

    Thank you!
     
  10. Jun 11, 2016 #9

    MMS

    User Avatar

    I'm trying to draw the actual diagram like you said and I'm kind of struggling to do so. Can you please show me the actual diagram with what you said?
    Thanks in advance.
     
  11. Jun 11, 2016 #10

    ChrisVer

    User Avatar
    Gold Member

    The diagram is exactly the same as the one you drew with the lepton final states... Remember that the W boson can decay to leptons+neutrinos, but it can also decay to q+q' (one up-type and one down-type quarks, eg [itex]W^- \rightarrow \bar{c}d[/itex])
     
    Last edited: Jun 11, 2016
  12. Jun 11, 2016 #11

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    The internet is full of Feynman diagrams of top decays.
     
  13. Jun 12, 2016 #12

    MMS

    User Avatar

    First off thanks for the help ChrisVer and mfb. I asked about the diagrams because I wasn't feeling pretty confident with what I'm drawing. But I tried understanding this better yesterday and I hope I got this right. Attached are 3 figures of the Feynman diagrams for the 3 decays I described above. I'd be happy if you guys could take a look at them and tell me if I did this correctly or give out some remarks. I can provide an argument for each if needed.

    First decay
    axGI3dz.jpg

    Second decay
    RNMzXXE.jpg

    Third decay
    zCfuCmg.jpg

    Thank you!
     
    Last edited: Jun 12, 2016
  14. Jun 12, 2016 #13

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Correct.
    And all the other decay modes work in the same way.

    Edit: Didn't check the arrows. Orodruin is right, some of them point in the wrong direction.
     
    Last edited: Jun 13, 2016
  15. Jun 13, 2016 #14

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Your fermion flows are not correct. You should take care in which way the arrows of your fermion lines go. In the standard model, the fermion flow never changes direction.
     
  16. Jun 13, 2016 #15

    ChrisVer

    User Avatar
    Gold Member

    also if you want to be extremely scholastic, writing [itex]q\bar{q}[/itex] on the diagrams can be misleading... the reason they write [itex]\bar{t}t\rightarrow b \bar{b} q\bar{q} l \nu[/itex] is to make it readable (in fact read the quarks as jets)... In the diagram you should make sure you prime the quarks coming from the Ws, in explicitely [itex]W\rightarrow q \bar{q}~'[/itex], because the two quarks are not each others' antiparticle (eg you don't have [itex]W \rightarrow u \bar{u}[/itex]).
     
  17. Jun 13, 2016 #16

    MMS

    User Avatar

    So the arrows on the W+ decay on each of the 3 ttbar decays is opposite?
     
  18. Jun 13, 2016 #17

    ChrisVer

    User Avatar
    Gold Member

    Ws don't need an arrow...
    the arrows for antiparticles [as you plot the diagrams] should look to the left (so for example some W product(s)-find them out- and [itex]\bar{t}\bar{b}[/itex] are wrong).
    the arrows for particles to the right.
     
  19. Jun 13, 2016 #18

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    To start with, all of your tbar arrows are in the wrong direction.
     
  20. Jun 13, 2016 #19

    MMS

    User Avatar

    Maybe this is something basic that I am missing out on but assuming I draw the antiparticle arrows in the opposite direction, how can one tell that it's a decay of ttbar that we're talking about? I thought an arrow going in and one out means that there is an interaction between the two particles. Or in general, how can I tell the difference between a decay and simply an interaction?
     
  21. Jun 13, 2016 #20

    ChrisVer

    User Avatar
    Gold Member

    Arrows don't necessariy show the flow of the interaction. They are there corresponding to some mathematical quantity, as are the Feynman Diagrams... they roughly tell you what kind of Dirac spinors you are using. In some interpretation, the antiparticles move "backwards in time", although that's an interpretation and shouldn't be taken literally in the same way as the Feynman diagrams shouldn't be literally taken as the physical interaction, so in that view it's natural to draw them like that...[in order to have a flow]

    well in your plot there are 2 arrows moving out from a "vertex".... [have a look at ttbar]... of course the tops don't come from the same vertex, but still.... the idea is again the one I mentioned, particles -> antiparticles <-.

    A decay is pretty simple an interaction that looks like this:
    [itex]1 \rightarrow 2+3+...+N[/itex]
    An interaction though should have at least 2 particles in the initial state....
    Although a decay is an interaction too [eg the particle 1 decays via an interaction to the particles 2,3...N) ...
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Higgs, top production
  1. Higgs-top resonances (Replies: 13)

Loading...