High Temperature in Gravitational Fields: Exploring the Possibility?

  • #1
Sir, heat is proportional to the vibration of atoms. If the vibration of atom is restricted to large extent due to intense gravitational field but has high quantity of total energy in the atom then does it mean it has high tempearture like the stars?
 
  • #2
Heat refers, so to speak, to thermal energy in transit. You can talk about the total energy inside a system, but it would be meaningless to ask how much heat is in a system. One can only discuss how much heat entered or left a system.
 
  • Like
Likes Chestermiller
  • #3
heat is proportional to the vibration of atoms.
No. See what @Lord Jestocost said in Post #1 about heat.

Also, 'vibrations' are not necessary. E.g. the particles in an ideal gas doe not vibrate. They move in random straight lines (bouncing off the container walls and each other).

If the vibration of atom is restricted to large extent due to intense gravitational field
The self-gravitational forces inside an atom (if that is what you mean) are incredibly small - totally negligible compared to the electric forces and the strong nuclear forces.

but has high quantity of total energy in the atom then does it mean it has high tempearture like the stars?
No.

High energy does not mean high temperature. The temperature of a system of particles depends on the average kinetic energy (of random motion) of the particles.

You can have have a cold object that contains a lot of energy - if the energy is mainly potential (not kinetic).
 

Suggested for: High Temperature in Gravitational Fields: Exploring the Possibility?

Back
Top