Hilbert Spaces

  • Thread starter Kindayr
  • Start date
  • #1
Kindayr
161
0

Homework Statement



Let [itex]H[/itex] be a Hilbert space. Prove [itex]\Vert x \Vert = \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}[/itex]


The Attempt at a Solution


First suppose [itex]x = 0[/itex]. Then we have [itex]\sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert (0,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert 0 \vert}{\Vert y \Vert} = 0 = \Vert 0 \Vert[/itex].

Now suppose [itex]x \neq 0[/itex]. Then [itex]\Vert x \Vert = \sqrt{(x,x)} = \frac{\sqrt{(x,x)} \cdot \sqrt{(x,x)}}{\sqrt{(x,x)}} = \frac{\vert (x,x)\vert}{\Vert x \Vert} \leq \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}[/itex].

Now I just can't do the reverse inequality. Any help is much appreciated.
 

Answers and Replies

  • #3
Kindayr
161
0
Cauchy-Schwarz?

omg how do i call myself a math major.

thank you.
 

Suggested for: Hilbert Spaces

  • Last Post
2
Replies
43
Views
2K
  • Last Post
Replies
1
Views
603
Replies
58
Views
1K
Replies
12
Views
616
  • Last Post
Replies
9
Views
668
Replies
1
Views
465
Replies
2
Views
671
Replies
24
Views
305
  • Last Post
Replies
2
Views
269
Top