(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [itex]H[/itex] be a Hilbert space. Prove [itex]\Vert x \Vert = \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}[/itex]

3. The attempt at a solution

First suppose [itex]x = 0[/itex]. Then we have [itex]\sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert (0,y) \vert}{\Vert y \Vert} = \sup_{0\neq y\in H}\frac{\vert 0 \vert}{\Vert y \Vert} = 0 = \Vert 0 \Vert[/itex].

Now suppose [itex]x \neq 0[/itex]. Then [itex]\Vert x \Vert = \sqrt{(x,x)} = \frac{\sqrt{(x,x)} \cdot \sqrt{(x,x)}}{\sqrt{(x,x)}} = \frac{\vert (x,x)\vert}{\Vert x \Vert} \leq \sup_{0\neq y\in H}\frac{\vert (x,y) \vert}{\Vert y \Vert}[/itex].

Now I just can't do the reverse inequality. Any help is much appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Hilbert Spaces

**Physics Forums | Science Articles, Homework Help, Discussion**