- #1
- 1,271
- 12
Homework Statement
For a real, band-limited function ##m(t)## and ##\nu_v > \nu_m,## show that the Hilbert transform of
$$h(t) = m(t) cos(2\pi \nu_c t)$$
is
$$\hat{h}(t) = m(t) sin(2 \pi \nu_c t),$$
and therefore the envelope of ##h(t)## is ##|m(t)|.##
Homework Equations
Analytic signal for a a real function ##f(t)## with Fourier transform ##F(\nu)## is given by
##f_a (t) = 2 \int^\infty_0 F(\nu) \exp(j 2 \pi \nu t).##
Modulation property of the Fourier transform
##f(t) \cos(2\pi \nu_0 t) \iff \frac{1}{2} \left( F(\nu + \nu_0) + F(\nu - \nu_0) \right)##
The Attempt at a Solution
The problem asks to compute the analytic signal from the Fourier transform of ##h(t)##, so I think I need to use the equation above for finding the analytic signal:
$$h_a (t) = 2 \int^\infty_0 \Big[ H(\nu) \Big] e^{-j 2 \pi \nu t} \ d\nu = 2 \int^\infty_0 \Big[ \int^\infty_{-\infty} m(t) \cos(2 \pi \nu_c t) e^{-j2 \pi \nu t} dt \Big] e^{-j 2 \pi \nu t} \ d\nu \ (i)$$
Furthermore, we are told that ##m(t)## is band-limited, which means ##M(\nu) = 0## for ##|\nu| > \nu_m.## So perhaps we can use the above property to write (i) as
$$h_a (t) = 2 \int^\infty_0 \Big[\frac{1}{2} \left( M(\nu + \nu_c) + M(\nu - \nu_c) \right) \Big] e^{-j 2 \pi \nu t} \ d\nu$$
Is this correct so far?
If this is correct, how do I simplify this further to find the imaginary part \hat{h}(t) (Hilbert transform)? Do I simply need to write the exponential as sine and cosine?
Any help would be greatly appreciated.