- #1

- 2

- 0

Now, if you put [tex]\infty[/tex] instead of n, you get [tex](1+(1/\infty))^\infty=(1+0)^\infty=1[/tex]

So how can e be 2.71828183... when you get 1?

Note that I am 12, so if it is obvious, don't attack me

- Thread starter Pumpkineater
- Start date

- #1

- 2

- 0

Now, if you put [tex]\infty[/tex] instead of n, you get [tex](1+(1/\infty))^\infty=(1+0)^\infty=1[/tex]

So how can e be 2.71828183... when you get 1?

Note that I am 12, so if it is obvious, don't attack me

- #2

mgb_phys

Science Advisor

Homework Helper

- 7,774

- 13

You have to be a little carefull putting infinity in equations, the normal rules of arithmatic don't really apply - you can only put approaching infinity.

- #3

- 179

- 0

The thing to note is the word

Now, if you put [tex]\infty[/tex] instead of n, you get [tex](1+(1/\infty))^\infty=(1+0)^\infty=1[/tex]

So how can e be 2.71828183... when you get 1?

Note that I am 12, so if it is obvious, don't attack me

It means that e is equal to the theoretical

(1+1/1,000)^1000 = 2.71692

(1+1/10,000)^10,000 = 2.71815

etc.

Also, if you are very keen on putting infinity in, then you could say:

1/infinity = a non-zero value but still infinitly small.

As 1+1/infinity is raised to higher and higher powers, it is still an infinitly small number away from 1. So if you raise it to the infinite power, the distance will become finite.

This is not a method of calculating the value of

beware though, this is not a rigorous method at all, just a way of looking at it. So if your reading this and you are a real mathematician, don't attack me either. :).

Last edited:

- #4

- 2

- 0

Thanks for the quick reply.

- #5

matt grime

Science Advisor

Homework Helper

- 9,395

- 3

But, there is a second point to make - although you shouldn't just put in infinity (or zero or whatever), doesn't mean you can't. Sometimes it does work out. But what you can't do is substitute in separately. You assert that 1/infinity is 0, then raise 1 to the power infinity, and assume that makes sense (which it does). But look at the expression:

(1+1/n)^n

the denominator and the power are linked - you took the limits separately. It is correct to say

lim_{m} lim_{n} (1+1/n)^m =1

if we let n tend to infinity then let m tend to infinity. But that is very different from the original limit you wrote down.

- #6

- 15

- 0

y = 1/x when x is 0 is undefined

however as x tends to zero from the positive side it tends to +infinity (try plugging in a small x if you don't believe me!)

from the negative x side it tends to -infinity (again plug in a small negative x)

This is quite normal.

- #7

- 107

- 0

This is one the problem I was facing with understanding e. Like the OP, I was wondering why the limit didn't equal 1^inf. I was so used to plugging in infinity for n in limits such as those for the test for divergence of series and improper integrals that I didn't realized that the limit of a quantity to a power is not the same as the limit of what is inside the quantity to a power. I've seen the limit outside of a compound function being "brought into" the inner function: lim sin(pi/x) = sin(lim (pi/x)), but I guess this doesn't work in this situation. By linked, I assume you mean the same variable. This post was very helpful.As has been pointed out you can't just 'put in infinity' to a limit. This is nothing special about infinity, just limits ... But, there is a second point to make - although you shouldn't just put in infinity (or zero or whatever), doesn't mean you can't. Sometimes it does work out. But what you can't do is substitute in separately. You assert that 1/infinity is 0, then raise 1 to the power infinity, and assume that makes sense (which it does). But look at the expression:

(1+1/n)^n

the denominator and the power are linked - you took the limits separately. It is correct to say

lim_{m} lim_{n} (1+1/n)^m =1

if we let n tend to infinity then let m tend to infinity. But that is very different from the original limit you wrote down.

- #8

- 20

- 0

I like most of what you point out...however rather than saying "plug in infinity", I prefer to say that in mathematics infinity is just about how an expression behaves as some quantity gets arbitrarily large.If you just try putting larger and larger values in then you will see that it gets closer and closer to 2.71828183~.

(1+1/1,000)^1000 = 2.71692

(1+1/10,000)^10,000 = 2.71815

etc.

The empirical illustrations nicely get the point accross but of course to actually evaluate the limit we need to use L'Hospital's rule. This type of indeterminate form is routinely treated in most calculus texts.

Hey one more thing....my hats off to you Pumpkineater, when I was twelve the most math I did was to compute baseball stats....Keep on asking those questions!

- #9

- 69

- 0

e is

Now, if you put [tex]\infty[/tex] instead of n, you get [tex](1+(1/\infty))^\infty=(1+0)^\infty=1[/tex]

So how can e be 2.71828183... when you get 1?

Note that I am 12, so if it is obvious, don't attack me

e is something else, you can define e as the base of natural logarithm.

e can also be defined as the unique real number such that area of region bounded by hyperbola

[tex]y = 1/x[/tex] and [tex] 1 \leq x \leq e [/tex] is 1.

I give you a link, it explains e in very simple way.

http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/" [Broken]

Last edited by a moderator:

- #10

Hurkyl

Staff Emeritus

Science Advisor

Gold Member

- 14,916

- 19

Also,e isnot[tex](1+(1/n))^n[/tex], it is just the way to calculate the "numerical value" of e.

e is something else, you can define e as the base of natural logarithm.

e can also be defined as the unique real number such that area of region bounded by hyperbola

[tex]y = 1/x[/tex] and [tex] 1 \leq x \leq e [/tex] is 1.

I give you a link, it explains e in very simple way.

http://betterexplained.com/articles/an-intuitive-guide-to-exponential-functions-e/" [Broken]

Last edited by a moderator:

- #11

Hurkyl

Staff Emeritus

Science Advisor

Gold Member

- 14,916

- 19

Do you remember the word "continuous"?I've seen the limit outside of a compound function being "brought into" the inner function: lim sin(pi/x) = sin(lim (pi/x)),

- #12

matt grime

Science Advisor

Homework Helper

- 9,395

- 3

If the power is fixed this is probably going to work, but in the (1+1/n)^n the power isn't fixed, is it?I didn't realized that the limit of a quantity to a power is not the same as the limit of what is inside the quantity to a power.

I've seen the limit outside of a compound function being "brought into" the inner function: lim sin(pi/x) = sin(lim (pi/x)), but I guess this doesn't work in this situation. By linked, I assume you mean the same variable. This post was very helpful.

In the (1+1/n)^n case they (the 'ns') are the same, but that is not the main point - you have taken limits selectively, which you can't do: you can't let n go to infinity here, then there, then somewhere else.

As Hurkyl says, sin is continuous, i.e. you can take the limit inside by definition.

- #13

- 369

- 1

Maybe the best way to get the numerical value is to use the binomial expansion of the expression. It is also a great way to pass the time on a rainy day.

Now, if you put [tex]\infty[/tex] instead of n, you get [tex](1+(1/\infty))^\infty=(1+0)^\infty=1[/tex]

So how can e be 2.71828183... when you get 1?

Note that I am 12, so if it is obvious, don't attack me

I only attack people who believe in ddwfttw, so you are safe, I hope!

- #14

- 492

- 0

I just lost faith in humanity.

- #15

- 179

- 0

The YouTube videos ARE quite convincing.

I just lost faith in humanity.

- #16

- 492

- 0

So was the movie Robocop, but you don't see me checking my sock drawer for cyborgs.

- #17

- 107

- 0

- #18

- 179

- 0

y = ln(x)

x = e^y

dx/dy = e^y ...and dy/dx = 1/(dx/dy)

dy/dx = 1/(e^y) = 1/x ...because x = e^y as stated earlyer

- #19

- 107

- 0

Thank you, Georgepowell, Mattgrime and Hurkyl for your help. Sry for hijacking this thread.

- #20

matt grime

Science Advisor

Homework Helper

- 9,395

- 3

As well as the other answer you got, you can also try the following:I know it is defined as such, but it seems like a rather arbitrary definition.

define F(x) as

[tex]\int_1^x \frac{1}{t}dt[/tex]

Now, exercise, show that

F(xy)=F(x)+F(y)

F(1/x)=-F(x)

which shows you that F behaves 'just like a logarithm'.

- #21

- 69

- 0

Yeah! Sorry my bad.Also,ecan be defined as [itex]\lim_{n \rightarrow +\infty} (1 + 1/n)^n[/itex]. :tongue:

Thanks for correction.