I've kind of fallen behind in my Algebra class and I really haven't read much about the theory. I'm wondering, how would you go on about proving that if an odd prime, p, does not divide a nor b, but divides the sum of their squares - a^2 + b^2 -, then p = 1 mod 4.(adsbygoogle = window.adsbygoogle || []).push({});

Up to know, I've been considering the special case in which gcd(a,b) = 1. Of course solving for this case solves for the entire problem; also it leaves something to work with since a^2 + b^2 = a + b mod 3 and a^2 + b^2 = 1 mod 4 or a^2 + b^2 = 2 mod 4. From that point all I tried seemingly led to a dead end. Maybe there is a property or something of the kind that I am not aware of and without which the problem becomes very cumbersome?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How could I prove this?

**Physics Forums | Science Articles, Homework Help, Discussion**