- #1

- 465

- 4

if i have a function U..

U=∫F∙ds

where F=<ayz+bx+c , axz+bz , axy+by> , a,b,c are constants

so.. F=(ayz+bx+c)[itex]\hat{x}[/itex] + (axz+bz)[itex]\hat{y}[/itex] + (axy+by)[itex]\hat{z}[/itex]

then how do i solve this integral? i have to either replace the x,y,z terms with something in terms of 's' (which is the displacement by the way, ie.. s= [itex]\sqrt{x^2+y^2+z^2}[/itex]

or i have to replace ds with some parametric ..stuff... how do i evaluate something like this?

U=∫F∙ds

where F=<ayz+bx+c , axz+bz , axy+by> , a,b,c are constants

so.. F=(ayz+bx+c)[itex]\hat{x}[/itex] + (axz+bz)[itex]\hat{y}[/itex] + (axy+by)[itex]\hat{z}[/itex]

then how do i solve this integral? i have to either replace the x,y,z terms with something in terms of 's' (which is the displacement by the way, ie.. s= [itex]\sqrt{x^2+y^2+z^2}[/itex]

or i have to replace ds with some parametric ..stuff... how do i evaluate something like this?

Last edited: