Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How do you get to v=d/t?

  1. Apr 6, 2012 #1
    Forgive the basic question but my Google Fu isn't strong enough in math.

    I understand that for constant velocity the function of the distance relative to the time takes the form of: d=A*t+ B

    Then of course the first derivative is the velocity: d'=v=A, which is a constant (expected since we started with a constant velocity).

    Q1: how do you represent d' in Leibniz's notation?
    Q2: how do you go from d' to the formula v=d/t?

    Thanks
     
  2. jcsd
  3. Apr 6, 2012 #2

    I like Serena

    User Avatar
    Homework Helper

    Welcome to PF, dag45hol! :smile:

    A1: The representation of d' in Leibniz's notation would be ##d' = \frac {dd} {dt}##.
    Of course this looks a bit ambiguous, so the letter d for distance is usually avoided when using Leibniz's notation.
    Typically one of the letters s or x is used.

    A2: The formula v=d/t is not always true in your case.
    It will only hold if the B in your equation is zero.
    In practice B is often chosen to be zero, so the formula v=d/t does hold.
     
    Last edited: Apr 6, 2012
  4. Apr 6, 2012 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    d= At+ B has a line as graph. For such a function, the derivative is a constant:
    [tex]\lim_{h\to 0}\frac{(A(t+h)+ B)- (At+ B)}{h}= \lim_{h\to 0}\frac{At+ Ah+ B- At- b}{h}[/tex]
    [tex]= \lim_{h\to 0}\frac{Ah}{h}= A[/tex]

    If, with d(t)= At+ B, d(0)= B is NOT 0, v is NOT just "d/t". The average velocity, between t0 and t1, would be
    [tex]\frac{d(t_1)- d(t_0)}{(t_1- t_0}= \frac{(At_1+ B)- (At_0+ B)}{t_1- t-0}= \frac{A(t_1- t_0)}{t_1- t_0}= A[/tex]

    As for Liebniz's notation, it would be dd/dt with the understanding, of course, that the second "d" is the distance function. There is no deep mathematics there but the possibility of confusion is one reason why it is more common to use "s" to represent the distance function.
     
  5. Apr 6, 2012 #4
    Lets replace d(istance) with s for clarity.

    I get how ds/dt=v and how it comes to be a constant (A). What I don't get is how ds/dt=v=s/t

    I get the feeling that this is obvious to you guys so please have patience.


    Thanks
     
  6. Apr 6, 2012 #5

    Char. Limit

    User Avatar
    Gold Member

    The thing you have to remember is that v=s/t is not always true. v is not always simply the quotient of distance and time. However, for constant velocity, the above equation holds. With non-constant velocity, it's better to use v=ds/dt.
     
  7. Apr 6, 2012 #6
    I understand that v=s/t is only good when v is a constant and that B must be zero for the function to hold.

    The question is how do you go from v=ds/dt to the formula v=s/t?

    Once again it seems that the answer is so obvious to you guys that you think I'm asking about other things.

    ds/dt=v => fine
    v=s/t => why? how do you go from ds/dt to s/t?
     
  8. Apr 7, 2012 #7

    I like Serena

    User Avatar
    Homework Helper

    You already had d'=A=v.

    So your formula d=A*t+B, can also be written as d=v*t+B.
    This can be manipulated into:

    d=v*t+B
    d-B=v*t
    (d-B)/t=v
    v=(d-B)/t

    With B is 0, this becomes v=d/t.
     
  9. Apr 7, 2012 #8
    Thanks, I knew it had to be something obvious =)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: How do you get to v=d/t?
  1. How do you graph (Replies: 2)

  2. How do you prove this? (Replies: 2)

Loading...