In these notes, https://ocw.mit.edu/courses/physics...-2016/lecture-notes/MIT8_04S16_LecNotes11.pdf, in the middle of page 5, it is mentioned:(adsbygoogle = window.adsbygoogle || []).push({});

We will be interested in bound states namely, energy eigenstates that are normalizable. For this the energy E of the states must be negative. This is readily understood. If E > 0, any solutions in the region x > a where the potential vanishes would be a plane wave, extending all the way to infinity. Such a solution would not be normalizable.

I'm guessing that the requirement that bound states are energy eigenstates that are normalizable is by definition. I also get why E>0 leads to a solution of e^ikx, as given in earlier sections, which extends to infinity will not be normalizable and hence, won't be a bound state (by definition). But why is e^ikx a plane wave? On page 10, it looks as though a plane wave, represented at places with zero potential, is just an exponential decay, why do we have the complex i in the equation? Also, in wikipedia, it says that a plane wave is mathematically represented as a cosine or a sine, not an exponential. I don't understand what's happening here...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I How is e^ikx a plane wave?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**