# How long it takes the Earth to fall halfway to the Sun--ellipse method

• B
Summary:
How long does it take for the Earth to fall half the distance to the Sun, without calculus?
There's a classic physics problem that is:

If Earth is orbiting the Sun at 1 au from and is suddenly stopped. How long does it take to fall into the Sun (neglecting the size of the Sun/Earth)?

I know that a clever way to solve this problem is by using degenerate ellipses and an object "falling" into the Sun is the equivalent of the object orbiting the Sun with very high eccentricity. Halving the semi-major axis of the orbit and using Kepler's Law gives: T=1AU/(4√2). However, I want to apply to strategy to another similar problem. This time:

If Earth is orbiting the Sun at 1 au from and is suddenly stopped. How long does it take for the Earth to travel half the distance to the Sun(neglecting the size of the Sun/Earth)?

If we were to use the result for T from the first problem and then simply apply Kepler's 2nd Law by looking at ratios of areas, we should be able to find this new time it takes to fall halfway to the Sun. However, I am having a problem visualizing what area of the ellipse the Earth covers when it travels half the distance to the Sun. I know about the calculus solution which is really bashy, so I would like some assistance with figuring out this more elegant method.

Andrew Mason
Homework Helper
Use Kepler's third law to find the period of an elliptical orbit where the semi-major axis is the half the radius of the earth's current orbit.

When stopped, the earth is at the farthest point from the sun. Since the earth would have no tangential speed, the orbit is the extreme elliptical orbit where the semi-minor axis is 0. In other words, and eccentricity of the ellipse is 1, putting the focii at the extrema of the ellipse. So the other extrema (also the other focus) is the centre of the sun (for practical purposes).

AM

vanhees71
Andrew Mason