How much statistical mechanics is enough for a physicist?

  • Thread starter accdd
  • Start date
  • #1
accdd
88
20
How much statistical mechanics do I need to know to study QFT, astrophysics, black hole thermodynamics, and other advanced topics? And where should I study it in your opinion? So far I have only read Tong's notes however I don't think it is enough. Some quantum statistical mechanics is also covered in Ballentine's book that I just finished studying.
I am aware of the fact that statistical mechanics is a vast subject that reaches up to the chemistry/physics of matter and I would not like to get lost in details and applications that are too specific to these fields.
 

Answers and Replies

  • #2
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,399
There's never "enough" statistical mechanics ;-)). In astrophysics you need it for sure, and you can learn a great deal more on QFT when you also consider the many-body version in both the Matsubara imaginary time and the Schwinger-Keldysh real-time formulation for equilibrium and the latter also for off-equilibrium theory. Despite the vast applications in all of physics from condensed matter, via nuclear and particle to astronomy (physics of compact stars, the nuclear equation of state, neutron-star mergers/kilonovae) and cosmology (thermal evolution of the universe, nucleosynthesis, CMBR,...) it's also a good addition for the conceptual understanding of (relativistic and also non-relativistic) QFT.
 
  • Like
Likes Vanadium 50, WernerQH, Lord Jestocost and 3 others
  • #3
Vanadium 50
Staff Emeritus
Science Advisor
Education Advisor
29,948
15,639
Because "how much" and "how little" are the same question, these questions can be restated as "what is the minimum I can get away with?"

That tends not to be an attitude leading to success,
 
Last edited:
  • Like
Likes mathguy_1995, jim mcnamara, vanhees71 and 1 other person
  • #4
accdd
88
20
There's never "enough" statistical mechanics ;-)). In astrophysics you need it for sure, and you can learn a great deal more on QFT when you also consider the many-body version in both the Matsubara imaginary time and the Schwinger-Keldysh real-time formulation for equilibrium and the latter also for off-equilibrium theory. Despite the vast applications in all of physics from condensed matter, via nuclear and particle to astronomy (physics of compact stars, the nuclear equation of state, neutron-star mergers/kilonovae) and cosmology (thermal evolution of the universe, nucleosynthesis, CMBR,...) it's also a good addition for the conceptual understanding of (relativistic and also non-relativistic) QFT.
I just finished studying Berkeley Statistical Physics by Reif. Some things I already knew, from Tong's notes. What should I study to get on with statistical mechanics at an appropriate level in your opinion? I saw that there are various statistical mechanics textbooks, what do you recommend and what are the differences?
For example, Kardar's "Statistical Physics of Particles" is much shorter than books by Reif, Huang, Landau or Pathria, why? Which book (or notes) can help me understand the topics you mentioned and the ones I mentioned? Thank you
 
  • #5
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,399
It depends a bit on what topic you are most interested in. Landau & Lifshitz is excellent, particularly Vol. 10 about kinetic theory. For the real-time formalism a very good intro is

P. Danielewicz, Quantum Theory of Nonequilibrium Processes
I, Ann. Phys. 152, 239 (1984),
https://doi.org/10.1016/0003-4916(84)90092-7

P. Danielewicz, Quantum Theory of Nonequilibrium Processes
II. Application to Nuclear Collisions, Ann. Phys. 152, 305
(1984), https://doi.org/10.1016/0003-4916(84)90093-9

For the relativistic case

J. I. Kapusta and C. Gale, Finite-Temperature Field Theory;
Principles and Applications, Cambridge University Press, 2
edn. (2006).

N. P. Landsmann and C. G. van Weert, Real- and
Imaginary-time Field Theory at Finite Temperature and
Density, Physics Reports 145, 141 (1987),
https://doi.org/10.1016/0370-1573(87)90121-9
 
  • Care
  • Like
Likes malawi_glenn and accdd
  • #6
accdd
88
20
I think the links you recommended are too advanced for me.
I am starting to study QFT, but I am also interested in astrophysics, cosmology, and black holes. In general, I am interested in a statistical mechanics book that will allow me to understand graduate level physics.
My current level is: notes by Tong + Berkeley Statistical Physics by Reif (the small book, which is introductory level)
 
  • #7
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,472
13,399
I think the "little Reif" (Berkeley Physics Course volume on Stat. Phys.) is very good, and also Tong's lecture notes are.
 

Suggested for: How much statistical mechanics is enough for a physicist?

Replies
4
Views
501
  • Last Post
Replies
11
Views
818
Replies
54
Views
4K
Replies
26
Views
700
  • Last Post
Replies
3
Views
1K
Replies
26
Views
3K
Replies
2
Views
691
  • Last Post
Replies
4
Views
971
Replies
25
Views
1K
Replies
14
Views
375
Top