Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A How to calculate the extrinsic curvature of boundary of AdS_2

  1. Jul 15, 2017 #1
    I have a simple but technical problem:

    How to calculate the extrinsic curvature of boundary of AdS_2?
    I am not very familiar with this kind of calculation.

    The boundary of AdS2metric
    is given by (t(u),z(u)).
    The induced metric on the boundary is
    $$ds^2_{bdy}=g_{\alpha\beta}dx^{\alpha}dx^{\beta}=g_{\alpha\beta}\frac{\partial x^{\alpha}}{\partial y^a}\frac{\partial x^{\beta}}{\partial y^b} dy^ady^b==g_{\alpha\beta}e^{\alpha}_ae^{\beta}_bdy^ady^b=h_{ab} dy^ady^b $$
    For $Ads_2$ case, $ds^2_{bdy}= h_{uu}dudu$ where $$h_{uu}= \frac{z'^2+t'^2}{z^2}$$

    My calculation is the following:

    1) compute normal vecotr (nt,nz)

    From the orthogonal relation $$e^\alpha_a n_\alpha=o $$ and unit norm condition $$g_{\alpha\beta}n^{\alpha}n^{\beta}=1$$ we have $$n^t=\frac{zz'}{\sqrt{t'^2+z'^2}} , n^z=-\frac{zt'}{\sqrt{t'^2+z'^2}} $$

    2) compute the extrinsic curvature $$K=\nabla_\alpha n^{\alpha}$$

    $$K=\nabla_\alpha n^{\alpha}=\frac{1}{\sqrt g}[\partial_t(\sqrt g n^t)+\partial_z(\sqrt g n^z)]=\frac{1}{\sqrt g}[\frac{1}{t'}\partial_u(\sqrt g n^t)+\frac{1}{z'}\partial_u(\sqrt g n^z)]$$

    I tried some times but I can not reprodue the result in the paper.
    My question is whether there are some mistakes in the formulas I used above. Thanks in advance.
  2. jcsd
  3. Jul 20, 2017 #2
    Thanks for the thread! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post? The more details the better.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted