How to do it faster?

  • Thread starter bomba923
  • Start date
[tex] 2\pi \int {x^3 \sin 2x\,dx} \Rightarrow \left\{ \begin{array}{l}
u = 2x \\
du = 2dx \\
\end{array} \right\} \Rightarrow \frac{\pi }{8}\int {u^3 \sin u\,du} = \frac{\pi }{8}\left( { - u^3 \cos u + \int {u^2 \cos u\,du} } \right) = \frac{\pi }{8}\left( { - u^3 \cos u + u^2 \sin u - \int {u\sin u\,du} } \right) = \frac{\pi }{8}\left( { - u^3 \cos u + u^2 \sin u + u\cos u - \sin u} \right) = \frac{{\pi \left[ { - 8x^3 \cos \left( {2x} \right) + 4x^2 \sin \left( {2x} \right) + 2x\cos x - \sin x} \right]}}{8} [\tex]

How can I do this faster? Are there things I can skip or connect--etc--?


Science Advisor
Homework Helper
Insights Author
3 times part integration would do it...

[tex]\int \left( x^3\sin 2x\right) dx=\allowbreak -\frac 12x^3\cos 2x+\frac 34x^2\sin 2x-\frac 38\sin 2x+\frac 34x\cos 2x +C [/tex]


Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads