- #1

- 665

- 0

[tex]\int\left(\frac{1-x}{x^2-4}\right)dx[/tex]

Thanks.

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter amcavoy
- Start date

- #1

- 665

- 0

[tex]\int\left(\frac{1-x}{x^2-4}\right)dx[/tex]

Thanks.

- #2

LeonhardEuler

Gold Member

- 859

- 1

[tex]\int-\frac{x-1}{x^2-4}dx[/tex]

[tex]=-\int\frac{x-2}{(x+2)(x-2)}+\frac{2}{2(x+2)(x-2)}dx[/tex]

[tex]=-\int\frac{1}{x+2}+\frac{2+x}{2(x+2)(x-2)}-\frac{x}{2(x^2-4)}}dx[/tex]

[tex]=-\int\frac{1}{x+2}+\frac{1}{2(x-2)}-\frac{x}{2(x^2-4)}}dx[/tex]

Now you can directly compute the first two parts as logs and the last as a log by recognizing x as one quarter the derivative of the denomenator

- #3

- 665

- 0

LeonhardEuler said:

[tex]\int-\frac{x-1}{x^2-4}dx[/tex]

[tex]=-\int\frac{x-2}{(x+2)(x-2)}+\frac{2}{2(x+2)(x-2)}dx[/tex]

[tex]=-\int\frac{1}{x+2}+\frac{2+x}{2(x+2)(x-2)}-\frac{x}{2(x^2-4)}}dx[/tex]

[tex]=-\int\frac{1}{x+2}+\frac{1}{2(x-2)}-\frac{x}{2(x^2-4)}}dx[/tex]

Now you can directly compute the first two parts as logs and the last as a log by recognizing x as one quarter the derivative of the denomenator

Well it looks like the only way to save time here is to use my TI-89 .

Thanks for the reply Euler.

Share: