How to find PDF and Expected value of max(x,0), for a random variable x

  • MHB
  • Thread starter user_01
  • Start date
  • #1
user_01
8
0
Let $a,b,c, \tau$ be positive constants and $x$ is an exponentially distributed variable with parameter $\lambda = 1$, i.e. $x\sim\exp(1)$.

\begin{equation}
E = \tau\Big[a\frac{1+a}{1+e^{-bx+c}} - 1 \Big]^+
\end{equation}


where $[z]^+ = \max(z,0)$

How can I find

  1. The PDF for $E$
  2. The expected value of E.
 

Answers and Replies

Suggested for: How to find PDF and Expected value of max(x,0), for a random variable x

  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
2
Views
545
Replies
2
Views
388
Replies
19
Views
1K
  • Last Post
Replies
22
Views
458
Replies
2
Views
1K
  • Last Post
Replies
4
Views
454
Top