1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How to prove a group is abelian

  1. Sep 15, 2009 #1
    1. The problem statement, all variables and given/known data
    Let [tex]G[/tex] be a finite group which possesses an automorphism [tex]\sigma[/tex] such that [tex]\sigma(g)=g[/tex] if and only if [tex]g=1[/tex]. If [tex]\sigma^2[/tex] is the identity map from [tex]G[/tex] to [tex]G[/tex], prove that [tex]G[/tex] is abelian.

    2. Relevant equations
    Show that every element of [tex]G[/tex] can be written in the form [tex]x^{-1}\sigma(x)[/tex] and apply [tex]\sigma[/tex] to such an expression.

    3. The attempt at a solution
    My first question is how to obtain [tex]x=x^{-1}\sigma(x)\mbox{, }\forall x\in G[/tex].

    If [tex]x=x^{-1}\sigma(x)\mbox{, }\forall x\in G[/tex] is obtained, then by applying [tex]\sigma[/tex] to the identity, and denote [tex]\sigma(x)[/tex] by [tex]y[/tex], we get [tex]y=y^{-1}x[/tex]. Then take inverse on both sides to get [tex]y^{-1}=x^{-1}y\Rightarrow xy^{-1}=y[/tex]. So [tex]y^{-1}x=xy^{-1}[/tex]. It seems the binary operation in the group commutes, but since [tex]y[/tex] is actually the image of [tex]x[/tex] under the automorphism [tex]\sigma[/tex]. So my second question is how to reach the conclusion from this result.

    Thanks in advance for any help!
    Last edited: Sep 15, 2009
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Discussions: How to prove a group is abelian