- 86

- 0

**How to prove stuff about linear algebra???**

Question:

Suppose [itex](v_1, v_2, ..., v_n)[/itex] is linearly independent in [itex]V[/itex] and [itex]w\in V[/itex].

Prove that if [itex](v_1 +w, v_2 +w, ..., v_n +w)[/itex] is linearly dependent, then [itex]w\in span(v_1, ...,v_n)[/itex].

To prove this I tried...

If [itex](v_1, v_2, ..., v_n)[/itex] is linearly independent then [itex]a_1 v_1 + ...+a_n v_n =0[/itex] for all [itex](a_1 , ..., a_n )=0[/itex].

then,

[itex]a_1 (v_1 +w)+a_2 (v_2 +w)+...+a_n (v_n +w)=0[/itex]

is not linearly independent, but can be rewritten as,

[itex]a_1 v_1 + ...+a_n v_n +(\sum a_i )w=0[/itex]

so,

[itex]a_1 v_1 + ...+a_n v_n = -(\sum a_i )w[/itex].

Since [itex]w[/itex] is a linear combination of vectors in [itex]V[/itex], [itex]w\in span(V)[/itex].

Did I do this right?

Is there a better way of doing this?

Any input is much appreciated!