Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mathematica How to remove I.0 from output?

  1. Jun 10, 2016 #1
    As I found on many websites, they suggest to use Chop[]. I tried that already but it doesn't work.

    This is my output.

    {{2 (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
    1] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) + (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
    5] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) +
    1/2 (2 Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    6] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) -
    1/2 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    8] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) - \!\(
    \*SubsuperscriptBox[\(\[Mu]\), \(1\), \(2\)]\ \((Conjugate[I . 0] +
    \*FractionBox[\(Conjugate[
    \*SubscriptBox[\(v\), \(1\)]]\),
    SqrtBox[\(2\)]] + \((I . 0 +
    \*FractionBox[
    SubscriptBox[\(v\), \(1\)],
    SqrtBox[\(2\)]])\)\ \*
    SuperscriptBox["Conjugate", "\[Prime]",
    MultilineFunction->None][I . 0 +
    \*FractionBox[
    SubscriptBox[\(v\), \(1\)],
    SqrtBox[\(2\)]]])\)\) -
    1/2 (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[2]) (I.0 +
    Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    4] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) -
    1/2 I (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
    8] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) -
    1/2 I (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
    9] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) -
    1/4 I (2 Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    10] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) + 1/2 I
    \!\(\*SubsuperscriptBox[\(\[Mu]\), \(4\), \(2\)]\) (-Conjugate[I.0] -
    Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) +
    1/2 (2 Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    3] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) +
    1/2 (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
    6] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) +
    1/2 (Conjugate[
    I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
    7] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) -
    1/4 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
    Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
    Sqrt[2])) Subscript[\[Lambda],
    10] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]]) - 1/2
    \!\(\*SubsuperscriptBox[\(\[Mu]\), \(3\), \(2\)]\) (Conjugate[I.0] +
    Conjugate[Subscript[v, 2]]/Sqrt[
    2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
    I.0 + Subscript[v, 1]/Sqrt[2]])}}

    I also would like to know the difference between Conjugate[] and Conjugate'[].
     
  2. jcsd
  3. Jun 10, 2016 #2
  4. Jun 10, 2016 #3
    This is the screenshot. cats.jpg
     
  5. Jun 10, 2016 #4

    DrClaude

    User Avatar

    Staff: Mentor

    What is the input that gave you this?
     
  6. Jun 10, 2016 #5

    Dale

    Staff: Mentor

    To remove I.0 from your output you should probably remove it from your input. It doesn't make sense to take the dot product of two scalars. I think it indicates an error in your code.
     
  7. Jun 10, 2016 #6
    I solved that problem already. The error is in my code. I used I dot with matrix. However, I have 1x2 matrix times 2x1 matrix and I get 1x1 matrix. Can I change this to scalar?
     
  8. Jun 10, 2016 #7

    Dale

    Staff: Mentor

    To me it doesn't make sense to have a dot product of I with anything.

    If you read the documentation on Dot it says that if either of the arguments are not lists then the Dot remains unevaluated. So that is consistent with the behavior that we see.
     
    Last edited: Jun 10, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted