- #1
- 5
- 0
As I found on many websites, they suggest to use Chop[]. I tried that already but it doesn't work.
This is my output.
{{2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
1] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
5] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
8] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - \!\(
\*SubsuperscriptBox[\(\[Mu]\), \(1\), \(2\)]\ \((Conjugate[I . 0] +
\*FractionBox[\(Conjugate[
\*SubscriptBox[\(v\), \(1\)]]\),
SqrtBox[\(2\)]] + \((I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]])\)\ \*
SuperscriptBox["Conjugate", "\[Prime]",
MultilineFunction->None][I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]]])\)\) -
1/2 (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[2]) (I.0 +
Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
4] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
8] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
9] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + 1/2 I
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(4\), \(2\)]\) (-Conjugate[I.0] -
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
3] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
7] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - 1/2
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(3\), \(2\)]\) (Conjugate[I.0] +
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]])}}
I also would like to know the difference between Conjugate[] and Conjugate'[].
This is my output.
{{2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
1] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
5] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
8] (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2] + (I.0 + Subscript[v, 1]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - \!\(
\*SubsuperscriptBox[\(\[Mu]\), \(1\), \(2\)]\ \((Conjugate[I . 0] +
\*FractionBox[\(Conjugate[
\*SubscriptBox[\(v\), \(1\)]]\),
SqrtBox[\(2\)]] + \((I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]])\)\ \*
SuperscriptBox["Conjugate", "\[Prime]",
MultilineFunction->None][I . 0 +
\*FractionBox[
SubscriptBox[\(v\), \(1\)],
SqrtBox[\(2\)]]])\)\) -
1/2 (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[2]) (I.0 +
Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
4] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
8] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/2 I (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
9] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (-Conjugate[I.0] - Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) + 1/2 I
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(4\), \(2\)]\) (-Conjugate[I.0] -
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (2 Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
3] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 1]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2])) Subscript[\[Lambda],
6] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) +
1/2 (Conjugate[
I.0] I.0 + (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 2]/Sqrt[2])) Subscript[\[Lambda],
7] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) -
1/4 I (-(Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2]) (I.0 + Subscript[v, 1]/Sqrt[2]) + (Conjugate[I.0] +
Conjugate[Subscript[v, 1]]/Sqrt[2]) (I.0 + Subscript[v, 2]/
Sqrt[2])) Subscript[\[Lambda],
10] (Conjugate[I.0] + Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]]) - 1/2
\!\(\*SubsuperscriptBox[\(\[Mu]\), \(3\), \(2\)]\) (Conjugate[I.0] +
Conjugate[Subscript[v, 2]]/Sqrt[
2] + (I.0 + Subscript[v, 2]/Sqrt[2]) Derivative[1][Conjugate][
I.0 + Subscript[v, 1]/Sqrt[2]])}}
I also would like to know the difference between Conjugate[] and Conjugate'[].