- #1

- 1,395

- 0

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

- Thread starter transgalactic
- Start date

- #1

- 1,395

- 0

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

- #2

Mark44

Mentor

- 34,678

- 6,387

- #3

Shooting Star

Homework Helper

- 1,977

- 4

This is one way of doing it.

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

[tex]

v_0=100e^{\frac{-v_0}{100}}.

[/tex]

Putting [itex]

{\textstyle{{{\rm v}_{\rm 0} } \over {100}}} = x, x = e^{ - x} \Rightarrow x = 1 - x + x^2 /2,

[/itex] retaining up to the second order term after expanding [itex]e^{-x}.[/itex]

Now solve for x to get the approximate value. Justify why you are neglecting one value.

- Replies
- 5

- Views
- 1K

- Replies
- 3

- Views
- 963

- Last Post

- Replies
- 5

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 684

- Last Post

- Replies
- 6

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 796