- #1

- 1,395

- 0

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

You should upgrade or use an alternative browser.

- Thread starter transgalactic
- Start date

- #1

- 1,395

- 0

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

- #2

Mentor

- 37,232

- 9,399

- #3

Homework Helper

- 1,981

- 4

v_0=100e^{\frac{-v_0}{100}}\\

\ln {v_0}=\ln{e^{\frac{-v_0}{100}}}^{100}\\

[/tex]

the answer is [tex]v_0=56.7[/tex]

how to find [tex]v_0[/tex]

??

This is one way of doing it.

[tex]

v_0=100e^{\frac{-v_0}{100}}.

[/tex]

Putting [itex]

{\textstyle{{{\rm v}_{\rm 0} } \over {100}}} = x, x = e^{ - x} \Rightarrow x = 1 - x + x^2 /2,

[/itex] retaining up to the second order term after expanding [itex]e^{-x}.[/itex]

Now solve for x to get the approximate value. Justify why you are neglecting one value.

Share:

- Replies
- 4

- Views
- 724

- Replies
- 11

- Views
- 1K

- Replies
- 6

- Views
- 851

- Replies
- 10

- Views
- 292

- Replies
- 4

- Views
- 254

- Replies
- 5

- Views
- 669

- Replies
- 2

- Views
- 420

- Replies
- 8

- Views
- 624

- Replies
- 12

- Views
- 921

- Replies
- 6

- Views
- 573