Hrmm derivative problems (concept?)

  • Thread starter VikingStorm
  • Start date

VikingStorm

I've been trying to do these concept-based questions, (but I think my concept isn't that sound).

"Suppose f'(2)=4, g'(2)=3, f(2)=-1 and g(2)=1. Find the derivative at 2 of each of the following functions
a. s(x)=f(x)+g(x)
b. p(x)=f(x)g(x)
c. q(x)=f(x)/g(x)"
I began doing this, without reading the find the derivative part. What order would I exactly solve it in? Or does it work straight in by plugging in the derivatives? (too simple, so must not be it)

"If f(x)=x, find f'(137)"
This is a pure concept question I'm sure...

"Explain what is wrong with the equation (x^2-1)/(x-1)=x+1, and why lim(x^2)/(x-1)=lim(x+1) both x->1"
The top factors out and supposedly cancels, though I'm not sure why I can't do that.
 

Soroban

Hello, VikingStorm!

"Suppose f'(2)=4, g'(2)=3, f(2)=-1 and g(2)=1. Find the derivative at 2 of each of the following functions
a. s(x) = f(x) + g(x)
b. p(x) = f(x)*g(x)
c. q(x) = f(x)/g(x)"

Yes , you're right ...
After finding the derivative, just plug in the given values.

(a) s'(x) = f '(x) + g'(x)
Hence: s'(2) = f'(2) + g'(2) = 4 + 3 = 7

(b) p'(x) = f(x)*g'(x) + g(x)*f '(x)
Hence: p'(2) = f(2)*g'(2) + g(2)*f '(2) = (-1)(3) + (1)(4) = 1

(c) q'(x) = [g(x)*f '(x) - f(x)*g'(x)]/[g(x)]^2
Hence: q'(2) = [(1)(4) - (-1)(3)][1^2] = 7
 
1,570
1
"If f(x)=x, find f'(137)"
This is a pure concept question I'm sure...

"Explain what is wrong with the equation (x^2-1)/(x-1)=x+1, and why lim(x^2)/(x-1)=lim(x+1) both x->1"
The top factors out and supposedly cancels, though I'm not sure why I can't do that.
for the first one, note that f'(x)=1 for all x, so f'(137)=1. another way to look at is is that for y=x, y=x is a tangent line at all points. the slope of the tangent line is 1 everywhere, so since f'(x) is the slope of the tangent line at (x,f(x)), f'(137)=1.

for the second question, the main thing is what is meant by the equality sign. suppose A(x) and B(x) are two algebraic expressions defined for some set such as the set of real numbers. then we say that A(x)=B(x) if and only if A(x) equals B(x) for all real numbers x. such equations like A(x)=B(x) that are true "everywhere" are called identities.

(x^2-1)/(x-1)=x+1 is *not* an identity because the equation isn't always true: it fails when x=1.

if you let A(x)=(x^2-1)/(x-1) and B(x)=x+1, note that A(x)=B(x) for all real numbers except x=1. when you take the limit as x approaches 1, x is never allowed to actually equal 1, so
limA(x)=limB(x).
 

Related Threads for: Hrmm derivative problems (concept?)

  • Posted
Replies
4
Views
1K
  • Posted
Replies
18
Views
7K
  • Posted
Replies
17
Views
2K
  • Posted
Replies
8
Views
2K
  • Posted
Replies
9
Views
823
  • Posted
Replies
7
Views
4K
  • Posted
Replies
5
Views
1K
  • Posted
Replies
7
Views
1K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top