- #1

- 26

- 0

## Homework Statement

I have a question on my quantum pset relating to calculating <p^2/2m> and <-e^2/r> for the first two spherically symmetric states of the hydrogen atom (in 3D).

## The Attempt at a Solution

I started out trying to calculate the averages with [tex]\psi[/tex] ... something like, for the ground state, [tex]\psi = \frac{e^{-2r/a_0}}{\sqrt{\pi * a_0^3}}[/tex].

But then I ran into problems (when I was trying to do the <-e^2/r>) when I came up with an integral involving a term [tex]\frac{e^{-2r/a_0}}{r}[/tex]. As far as I could see, this integral sort of seems to explode at the origin / at infinity. I was wondering, should I use just the radial wavefunction part, since it has an extra r factor that would make this integral possible? I was just confused basically...