Let me see if I got this straight... The hydrogen spectra consists of a couple of series - Lyman, Balmer, Paschen, Brackett, etc - which all corresponds to a certain energy transition - Lyman (n>1 -> n=1), Balmer (n>2 -> n=2).. and so on... correct ?(adsbygoogle = window.adsbygoogle || []).push({});

And since n=1 is the ground state, a hydrogen atom in a low energy state will mainly emit lines in the Lyman series, right ?

Isn't it strange that the highest energy photons are emitted at the lowest energy state ?

Exactly what lines are emitted given a certain temperature (or energy state) ? I've been under the impression that all series are emitted seperately, i.e. all lines of a specific series (and only those lines) are emitted at a certain temperature. Is this true ? Or are all alfa-lines (in each series) emitted together, or perhaps just lines within a certain scope, e.g. 1000nm-2000nm ?

If the entire lyman series is emitted at a lower energy state than say the alfa-line in Balmer, does this mean that the transition from say n=100 -> n=1 is more likely to happen than the transition from n=3 -> n=2 ?

i.e. given a certain energy state, are all transitions in a lower series always more likely than any in a higher series ?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Hydrogen spectra

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**