# Hypothesis for the nature of gravity

1. Jul 25, 2004

### Metallicbeing

In our universe, matter “apparently” attracts more matter. In fact, “gravity” is the name chosen for that exact effect. Gravity is the least understood of all the forces. It’s the only force that always seems to be attractive. Why is that? I couldn’t possibly know why for sure, but I do have an idea that I’d like to share.

Suppose that there is a parallel universe to our own where, instead of matter, there is mainly antimatter. Wherever there is matter that occupies space in our universe, there is antimatter that occupies the same space in the antimatter universe (we overlap each other). The “barrier” that separates matter and antimatter might be space-time or perhaps Zero Point Energy.

Matter and antimatter are mutually attracted to each other from across the barrier, which "squeezes" the barrier, resulting in an increase in attraction (gravity well). At some point the energy exerted by the “squeeze”, and the barrier energy required to resist the collapse of the barrier will finally equalize.

Other matter in the area (on both sides), have a gravity well of their own. They start to move towards each other in order to merge, further weakening the barrier, and increasing mutual attraction. If the cycle were to continue to the point where mass on both sides finally overcame the total energy density of the barrier (which would be the grand-daddy of all black holes), matter and antimatter would meet, and a Big Bang would occur.

I know, this is full of assumptions, but it is an interesting concept (to me anyway). In summary, mutual attraction across the barrier squeezes the barrier causing matter and antimatter on each plane to "gravitate" towards the weak spots in the barrier. This "gravitation" that we observe in our universe is what we perceive as gravity. In actuality, “gravity” is matter’s attraction to antimatter (sort of like an extra-dimensional cosmic magnet…. or not).

Anyway, tell me what you think. Please don’t tell me that I’ve “re-invented the wheel”. :surprise:

Last edited: Jul 27, 2004
2. Jul 25, 2004

### Alkatran

That's a very interesting thought, but here's why it won't work:

As the matter approached the antimatter, the attraction would increase, so they would approach more...

Basicly, gravity would get stronger and stronger...

*edit*
Unless the barrier acted in a similar fashion to a spring.

Last edited: Jul 25, 2004
3. Jul 25, 2004

### Metallicbeing

Yes, I thought of this too. You're right. The energy exerted by the barrier can not be linear. It must be exponential to some maximum energy density.

4. Jul 25, 2004

### Alkatran

Alright, let's consider this on a 3 dimensional cube, with matter travelling along a 2 dimesional universe on top and anti matter on the bottom.

Let's say matter is spread out evenly on the top except for a large concentration in the center (and, by consequence, anti-matter is on the bottom as well).

Now, we have particle A and B. A is part of the large mass in the center while B is off in a corner. The force of attraction on A from the large mass on the opposite side of the cube is greater due to the reduced distance. As such, A gives off more gravity per kilogram than B.

That looks like the main hole in your theory.

5. Jul 26, 2004

### Muddler

Hi!

Your ideas are pleasantly similar to some of mine!
This image of the "interwoven" matter and antimatter universes is what lead me to this theory:
Maybe you might want to read it and tell me your thoughts about it. This might result in a really promising dialogue!

6. Jul 26, 2004

### Metallicbeing

I see where you're going with this. I think for this to work each gravity well has to be most intense at its core, then the field strength drops off similar to that of a magnetic field. Using a magnet analogy, if you place a magnet within a stronger magnetic field (N-N & S-S), that magnet does not have a distincly stonger field because of it. It only adds its own field to the existing field, making it that much stonger. Please note that by "field" I mean "gravity well".

7. Jul 26, 2004

### Alkatran

You're only reducing the problem. But if it isn't observable, it wouldn't really matter, would it?

The problem is that for this to work, the barrier must be relatively "thin", otherwise you really would have a large difference/kilogram (see: x^2 + y^2 + z^2= distance^2). And if they're close, compact masses pull across the barrier much more noticeably.

Actually, the more matter you have shoved together, the more it weighs.

Or maybe I misunderstood your argument?

8. Jul 26, 2004

### Metallicbeing

Muddler,

Alkatran,

OK, I think what you're saying is that when matter accumulates in one area that the total weight of that mass would be greater than if they were separated, weighed, and added together (due to the "sqeezing" effect of the barrier). Is this correct?

Please picture a smooth mattress (the barrier). In the center of the mattress we'll put a nice heavy bowling ball. Note how much the mattress has dipped. Now we add another bowling ball. The mattress has dipped even further. However, we only doubled the weight (mass). The bowling balls don't weigh any more than they did before. The dip in the mattress is simply caused by their combined weight. If we were to put more balls on the mattress, despite having their own smaller dip, they will roll towards the deeper dip in the mattress adding their weight and creating an even deeper dip in the mattress.

9. Jul 26, 2004

### Chronos

No need for parallel universes to explain gravity [its hard enough to figure out the one we live in and can observe]. Actually, we have a very thorough understanding of the effects of gravity [eg, the cassini probe]. What is not understood is how it works on the quantum level and how to unify it with the other forces of nature [the two pretty much go hand in hand].

10. Jul 26, 2004

### Metallicbeing

Chronos,

I think we all know what gravity does (eg, the cassini probe's "sling shots". Yes, I get it). But, what makes you think that gravity is a force that can be unified with the others? It has fundamental differences.

Last edited: Jul 26, 2004
11. Jul 26, 2004

### Metallicbeing

Muddler,

I've read your post. I think we agree that gravity requires some form of symmetry or reactance.

I would give you this advice though. Whenever you explain something, your terms should be the same (or close as possible) with those of the people you're communicating with. If you have a new term, make it yours by putting it in quotes and follow up with as clear a definition as possible. Language is one of the hardest mediums to communicate with, so always try to keep it simple.

12. Jul 27, 2004

### Alkatran

If the force of gravity is due to the force between matter and anti-matter across a barrier, this force would increase as distance decreased. If you only had one object, the more it weighed the closer they would get. But you need to remember that every part of the object is being pulled on by every part of the anti-object. As such, mass accumualted in an area is pulling itself more than mass spread out because the average distance between particles (across the barrier) is lower.

13. Jul 27, 2004

### Metallicbeing

I think you almost have what I'm trying to get across.

1. The mutually attractive force between matter and antimatter sqeezes the barrier. There is no other interaction with other matter (or antimatter) in the area until they are close enough to be drawn in by the curvature of space-time (not the attractive force between matter and antimatter).

2. The curvature in space-time resulting from this "sqeeze" is what draws other matter (and antimatter) to this weak point in the barrier. At this time, matter (and antimatter) that has been drawn into the curved space-time (gravity well) add their mutually attractive force to the others and the barrier is sqeezed even further.

So, we have two forms of phenomena. One between matter and antimatter that we aren't able to observe (but we can infer), and one that we can observe between matter and other matter on this plane (with the same happening on the antimatter plane).

The force between matter and antimatter might be something like the electro-weak force, while "gravity" may not be a force at all, but merely a property of space-time (curvature).

14. Jul 27, 2004

### ArmoSkater87

Hi all, i really tried to understand how this theory explains why matter is attracted to other matter, but it didnt get to me. Can someone please clarify. :D

15. Jul 27, 2004

### Metallicbeing

Gravity in a nutshell...

1. In our universe there is a matter plane (ours) and an antimatter plane (the one we can't see).

2. Mass on both planes occupy the same space in the universe. Since we are on the "matter" plane, we only see matter (with a little antimatter here and there). The opposite is true for the antimatter plane, except we can't see that plane.

3. The "barrier" separating our planes is space-time or perhaps Zero Point Energy. (Maybe these are part of the same thing)

4. Matter and antimatter are mutually attracted to each other across the barrier. This "sqeezes" the barrier, causing space-time to curve (a gravity well).

5. This curvature in space-time draws in other matter/ antimatter pairs who have space-time curvature of their own.

6. Once these masses have combined (matter with matter & antimatter with antimatter), they merge their mutually attractive forces to squeeze the barrier even more, creating a deeper curvature in space-time.

7. This deeper curvature in space-time is able to reach out even farther to draw in even more matter/ antimatter pairs.

8. This "observable" action on our plane is what we call gravity.

What I propose is that the force of attraction between matter and antimatter is actually something like the electro-weak force, and that "gravity" is probably not a "force" at all. "Gravity" is most likely just a property of space-time (curvature).

Here's an interesting note: Imagine if the cycle repeated itself until the barrier could no longer resist (the grand-daddy of all blackholes). Matter and antimatter would finally meet and create a "Big Bang".

16. Jul 27, 2004

### Alkatran

Why does anti-B affect B but not A? Shouldn't the attraction towards anti-matter cause a force between anti-B and A?

17. Jul 27, 2004

### ArmoSkater87

Oh...hmmm, well that makes sense, but its very hypothetical. Lets see, lets say u had an identical planet to the earth, and it was much farther from the barrier, wouldnt the gravity on the planet be less than on earth?

18. Jul 28, 2004

### Metallicbeing

Yes, and the effect will become exponentialy greater as they get closer. Keep in mind that matter/ antimatter pairs overlap (occupy the same space, but seperate planes). Any space seperating other matter/ antimatter pairs greatly diminishes "cross" attractions.

19. Jul 28, 2004

### Metallicbeing

Well, that's just it, you can't move away from the barrier (the barrier is space-time, and the planet is within space-time).

20. Jul 28, 2004

### ArmoSkater87

Oh, i was thinking of it as two universes seperated by a wall, in a sense....