Hypothesis testing case

  • Thread starter GabrielN00
  • Start date
  • #1

Homework Statement


Given ##X_1,\dots,X_{100}##, test ##H_0: \lambda=1## against ##H_a: \lambda=4##. The mean ##\bar{X_{100}}=1.5##
(1) Take the decision on 3% level.
(2) Find the p-value

Homework Equations



##t=\frac{\bar{x}-\mu}{s/\sqrt{n}}##

The Attempt at a Solution



The level of significance is ##0.033##. The p-value I need to evaluate ##\frac{\bar{x}-\mu}{s/\sqrt{n}}##, but I am missing ##s##. Is it still possible to have a solution?
 
Last edited by a moderator:

Answers and Replies

  • #2
36,297
13,372
Is that the full problem statement?

Is the Poisson distribution mentioned somewhere?
 
  • #3
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,722

Homework Statement


Given ##X_1,\dots,X_{100}##, test ##H_0: \lambda=1## against ##H_a: \lambda=4##. The mean ##\bar{X_{100}}=1.5##
(1) Take the decision on 3% level.
(2) Find the p-value

Homework Equations



##t=\frac{\bar{x}-\mu}{s/\sqrt{n}}##

The Attempt at a Solution



The level of significance is ##0.033##. The p-value I need to evaluate ##\frac{\bar{x}-\mu}{s/\sqrt{n}}##, but I am missing ##s##. Is it still possible to have a solution?
Do you mean that the upper limit on the type-I error is 3%? How did 3% become 0.033?

Are ##X_1, X_2, \ldots, X_{100}## independent and identically distributed? Are they Poisson random variables? If they are Poisson, you can use the formula for the variance of a Poisson to get the exact standard deviation ##\sigma##, so there is no need to use the unavailable sample variance, ##s##. (However, for a Poisson, variance is a function of the mean, so be careful).
 

Suggested for: Hypothesis testing case

Replies
7
Views
515
Replies
1
Views
362
Replies
3
Views
312
Replies
1
Views
1K
Replies
0
Views
238
  • Last Post
Replies
2
Views
928
  • Last Post
Replies
8
Views
976
Replies
1
Views
590
Replies
2
Views
962
Top