1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I just wanna check my work on this problem

  1. Oct 3, 2004 #1
    [tex] \textrm{Hello, folks. I just wanna check my work on this problem. Thanks.} [/tex] :cool:

    [tex] \textrm{A certain ball has the property that each time it falls from a height} [/tex] [tex] h [/tex] [tex] \textrm{onto a hard, level surface, it rebounds to a height}[/tex] [tex] rh [/tex] [tex]\textrm{, where}[/tex] [tex]0<r<1[/tex]. [tex] \textrm{Suppose that the ball is dropped from an initial height of}[/tex] [tex] H [/tex] [tex] \textrm{meters.} [/tex]

    [tex] \textrm{(a) Assuming that the ball continues to bounce indefinitely, find the total distance that
    it travels.} [/tex]

    [tex] H + 2rH + 2r^{2}H + 2r^{3}H + \cdots = H + 2H \sum _{n=1} ^{\infty} \left( r \right) r^{n-1} = H + 2H \left( \frac{r}{1-r} \right) = H \left( \frac{1+r}{1-r} \right) [/tex]

    [tex] \textrm{(b) Calculate the total time that the ball travels.} [/tex]

    [tex] t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + \sqrt{\frac{2rH}{g}} + \sqrt{\frac{2r^2H}{g}} + \sqrt{\frac{2r^3 H}{g}} + \cdots [/tex]

    [tex] t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + \sqrt{\frac{2rH}{g}} \left( 1 + \sqrt{r} + \sqrt{r^2} + \sqrt{r^3} + \cdots \right) [/tex]

    [tex] t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + \sqrt{\frac{2rH}{g}} \left( \frac{1}{1-\sqrt{r}} \right) [/tex]

    [tex] \textrm{(c) Suppose that that each time the ball strikes the surface with velocity}[/tex] [tex]v[/tex] [tex]\textrm{it rebounds with velocity}[/tex] [tex] -kv [/tex][tex] \textrm{, where}[/tex] [tex] 0<k<1 [/tex]. [tex] \textrm{How long will it take for the ball to come
    to rest?} [/tex]

    [tex] v_{\textrm{REST}} = v + kv + k^2 v + k^3 v + \cdots [/tex]

    [tex] v_{\textrm{REST}} = v + \sum _{n=1} ^{\infty} \left( k v \right) k^{n-1} [/tex]

    [tex] v_{\textrm{REST}} = v + \left( \frac{kv}{1-k} \right) [/tex]

    [tex] \textrm{If } K=U, \textrm{we find} [/tex]

    [tex] \frac{1}{2}mv_{\textrm{REST}} ^2= mgH [/tex]

    [tex] \frac{1}{2}m\left[ v^2 + 2v^2 \left( \frac{k}{1-k} \right) + v^2 \left( \frac{k}{1-k} \right)^2 \right] = mgH [/tex]

    [tex] H = \frac{1}{2g}\left[ v^2 + 2v^2 \left( \frac{k}{1-k} \right) + v^2 \left( \frac{k}{1-k} \right)^2 \right] [/tex]

    [tex] \textrm{which gives} [/tex]

    [tex] t_{\textrm{REST}} = - \frac{2\left| \frac{v}{g\left( k-1 \right)} \right|}{\sqrt{r}-1} - \left| \frac{v}{g\left( k-1 \right)} \right| [/tex]
     
  2. jcsd
  3. Oct 4, 2004 #2

    Galileo

    User Avatar
    Science Advisor
    Homework Helper

    At b)
    The time it takes to fall from a height h is [itex]\sqrt{\frac{2h}{g}}[/itex], so the time it takes to rebound to a height h and fall down to the ground again is twice as long.

    [tex]t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + 2\sqrt{\frac{2rH}{g}} + 2\sqrt{\frac{2r^2H}{g}} + 2\sqrt{\frac{2r^3 H}{g}} + \cdots [/tex]
     
  4. Oct 4, 2004 #3
    [tex] \textrm{Yes, indeed. I should have written}[/tex]

    [tex]t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + 2\sqrt{\frac{2rH}{g}} + 2\sqrt{\frac{2r^2H}{g}} + 2\sqrt{\frac{2r^3 H}{g}} + \cdots [/tex]

    [tex] t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + 2\sqrt{\frac{2rH}{g}} \left( 1 + \sqrt{r} + \sqrt{r^2} + \sqrt{r^3} + \cdots \right) [/tex]

    [tex] t_{\textrm{TOTAL}} = \sqrt{\frac{2H}{g}} + 2\sqrt{\frac{2rH}{g}} \left( \frac{1}{1-\sqrt{r}} \right) [/tex]

    [tex] \textrm{Thanks.}[/tex]
     
  5. Oct 12, 2004 #4
    Guys, I'm not so sure about what I found for part (c). Did I get it right?

    Thank you. ​
     
  6. Oct 12, 2004 #5

    chroot

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Admin note: It is preferable to keep the text parts of your posts in plain text, and use LaTeX only to render pieces of math notation.

    - Warren
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?