I need help proving two Trig identities!

  • Thread starter xxiangel
  • Start date
  • #1
5
0
1. Cos x (sec x + cos x csc^2 x) = csc^2 x

I got as far as this.... 1 + cos^2 + cos/sin^2 = csc^2

2. tan x(sin x + cot x cos x) = sec x
 

Answers and Replies

  • #2
505
0
1. Change everything on the left into terms of cos and sin. Then distribute the cosx, after that try to combine anything you can, change anything you can to tanx, etc.

2. Again, change everything you can into sin and cos first, then distribute.

A few of the most important things to keep in mind are, when you are done with simplifying things and whatnot, if something is a fraction, combine the terms. In such trig identities, one of the most used basic definitions is tanx=sinx/cosx
 
Last edited:
  • #3
0rthodontist
Science Advisor
1,230
0
xxiangel said:
I got as far as this.... 1 + cos^2 + cos/sin^2 = csc^2
Well, you made a mistake somewhere. Substitute in some random angle and you can see that this is not true.
 
  • #4
9
0
hey you, i got this
cosX(secX+cosXcsc^2X)=csc^2x
just solve the left side
cosX[(1/cosX)+(cosx/sin^2X)]=csc^2X
then multiply ,so...
cosX(1/cosX)+cosX(cosX/sin^2X)=csc^2X
1+cot^2X=csc^2X
since 1+cot^2X one of the trig identity which equals
to csc^2X, problem solved
 
  • #5
479
2
For the future, mrtkawa, have the original poster attempt his/her own work instead of providing the full solution.
 
  • #6
47
0
I was able to solve this till 1+cot^2 = Csc^2 , but do you just use pythagorean identity to fine the identity or what? How are these two equal?
 
  • #7
47
0
for 2.

change everything to cos and sin

SinX/CosX[SinX + CosX/SinX(CosX)] = 1/Cosx

work inside the bracket now.

Cosx/sinx(cosx) = cos^2x/sinx
SinX + Cos^2x/Sinx Now get common denominators
you should notice something and be able to work from there.
 

Related Threads on I need help proving two Trig identities!

  • Last Post
Replies
3
Views
3K
Replies
4
Views
1K
  • Last Post
Replies
7
Views
4K
  • Last Post
Replies
4
Views
791
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
9
Views
5K
  • Last Post
Replies
16
Views
8K
  • Last Post
Replies
5
Views
4K
Top