(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A one-dimensional system is in a state at time t=0 represented by:

Q(x) = C { (1.6^0.5)Q1(x) - (2.4^0.5)Q2(x)}

Where Qn(x) are normalised eergy eigenfunctions corresponding to different energy eigenvalues, En(n=1,2)

Obtain the normalisation constant C

3. The attempt at a solution

I get C= i(1.2)^0.5 from the following equation:

C^2 * (1.6 (int( Q1 ^2 dx) - 2.4(int ( Q2 ^2 dx = 1

So C^2 has to be -5/4 in order for the above to be true. Is this right?

Just a bit confused over whether it's possible to have an imaginary value for the normalisation constant? Thanks for any help you can give.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Imaginary Normalisation Constant

**Physics Forums | Science Articles, Homework Help, Discussion**