# Impulse & Inelastic Collision

#### DoctorB2B

1. Homework Statement
Block A (2.1kg) is moving at 7.8 m/s to the right and collides head on with block B (3.4kg), which is moving at 4.2 m/s to the left.

a) What is the velocity (magnitude and direction) of the blocks after the collision, if the two blocks stick together?

b) What is the impulse (magnitude and direction) of block B on block A during the collision?

2. Homework Equations
m1v1 + m2v2 = (m1 +m2)(vf)

3. The Attempt at a Solution
a)I plugged in known values ((2.1)(7.8)+(3.4)(-4.2))=(5.5)vf
vf=0.382 to the right, since the number was positive

b)I'm not sure where to start.

Related Introductory Physics Homework Help News on Phys.org

#### LowlyPion

Homework Helper
1. Homework Statement
Block A (2.1kg) is moving at 7.8 m/s to the right and collides head on with block B (3.4kg), which is moving at 4.2 m/s to the left.

a) What is the velocity (magnitude and direction) of the blocks after the collision, if the two blocks stick together?

b) What is the impulse (magnitude and direction) of block B on block A during the collision?

2. Homework Equations
m1v1 + m2v2 = (m1 +m2)(vf)

3. The Attempt at a Solution
a)I plugged in known values ((2.1)(7.8)+(3.4)(-4.2))=(5.5)vf
vf=0.382 to the right, since the number was positive

b)I'm not sure where to start.
Maybe start with what you know impulse is?

#### DoctorB2B

J=delta p

I wasn't sure where to start because I'm dealing with two objects moving at different speeds. I think I'm suppose to be dealing with initial and final velocities, however I don't know which initial velocity I would use since this is an inelastic collision.

#### LowlyPion

Homework Helper
J=delta p

I wasn't sure where to start because I'm dealing with two objects moving at different speeds. I think I'm suppose to be dealing with initial and final velocities, however I don't know which initial velocity I would use since this is an inelastic collision.
But they ask you what the impulse is on Block A. You know its initial p. And since matter wasn't destroyed that same mass of A now has acquired a final velocity, and hence has experienced a Δ in p right?

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving