Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Indefinite integral of csc()

  1. Jul 8, 2014 #1
    What is the indefinite integral of [itex]cosec(\theta)[/itex]?
  2. jcsd
  3. Jul 8, 2014 #2


    User Avatar
    Gold Member

  4. Jul 8, 2014 #3


    User Avatar
    Science Advisor

    [itex]cosc(x)= \frac{1}{sin(x)}[/itex].

    [tex]\int cosec(x)dx= \int \frac{1}{sin(x)}dx= \int\frac{sin(x)}{sin^2(x)}dx= \int\frac{sin(x)}{1- cos^2(x)}dx[/tex].

    Now let u= cos(x) so that [itex]du= -sin(x)dx[/itex].
  5. Jul 8, 2014 #4


    User Avatar
    Homework Helper

    If you know the trick to integrate ##sec(x)##, try it with the co-functions instead.
  6. Jul 8, 2014 #5
    Here's an alternative solution: $$\eqalign{
    \int\csc x\,\mathrm dx &= \int\left(\csc x\dfrac{\csc x-\cot x}{\csc x-\cot x}\right)\mathrm dx \\
    &=\int\left(\dfrac{\csc^2 x-\cot x\csc x}{\csc x-\cot x}\right)\mathrm dx.
    Now use the [itex]u[/itex]-substitution [itex]u=\csc x-\cot x[/itex] and you'll get: $$\int\dfrac{1}{u}\mathrm du=\ln|u|+{\cal C}=\ln|\csc x-\cot x|+{\cal C}.$$
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook