- #1
Crystal037
- 165
- 7
- Homework Statement:
- Integrate 1/(x(1-x))^(1/2)dx
- Relevant Equations:
- Integral of 1/rt(1-x^2)dx = arcsinx
Let x=t^2
Then dx=2t dt
Integral of 1/(x(1-x))^(1/2)dx
= integral of 2tdt/t(1-t^2) ^(1/2)
= integral of 2dt/(1-t^2) ^(1/2)
= 2 arcsin(t) +c
= 2 arcsin(rt(x)) +c.
But the answer in my book is arcsin(2x-1) +c.
Tell me how
2 arcsin(rt(x) +C= arcsin(2x-1) +c
I know the constant will vary for both the answers and both the answers must come equal after some manipulation. Is my answer correct.
Then dx=2t dt
Integral of 1/(x(1-x))^(1/2)dx
= integral of 2tdt/t(1-t^2) ^(1/2)
= integral of 2dt/(1-t^2) ^(1/2)
= 2 arcsin(t) +c
= 2 arcsin(rt(x)) +c.
But the answer in my book is arcsin(2x-1) +c.
Tell me how
2 arcsin(rt(x) +C= arcsin(2x-1) +c
I know the constant will vary for both the answers and both the answers must come equal after some manipulation. Is my answer correct.