This problem is difficult to describe, so I'll post a picture.(adsbygoogle = window.adsbygoogle || []).push({});

http://img71.imageshack.us/my.php?image=pic1ik.gif

The figure above shows a rod of length L caused to move at a constant speed v along horizontal conducting rails. The magnetic field B (the magnitude and direction of which are qualitatively shown by the figure) is not constant, but is supplied by a long wire parallel to the conducting rails. This wire is a distance a from the rail and has a current i.

L=3.13 cm, v=3.11 m/s, a=15.6 mm, and i=11 A.

What is the induced emf (e) in the rod?

---

B = (u_0 I)/(2pi y), and it is not uniform, so I integrated over y=a...L

I got (u_0 I)/(2pi)*ln(L/a).

emf = vBL = v * (u_0 I)/(2pi)*ln(L/a) * L = 3.11 * 1.544597242E-6 * 0.0313 = 1.503557293E-7 V

That is not the right answer, however.

I double-checked that my calculations are correct. So I'm guessing that my steps are incorrect. Can anyone point me to where I'm going wrong?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Induced Current

**Physics Forums | Science Articles, Homework Help, Discussion**