Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I have a problem to understand what people say by "induced metric". In many papers, it is written that for brane models, if we consider the metric on the bulk as [itex]g_{\mu\nu}[/itex] hence the one in the brane is [itex]h_{\mu\nu}=g_{\mu\nu}-n_\mu n_{\nu}[/itex] where [itex]n_{\mu}[/itex] is the normalized spacelike normal vector to the brane. I agree that it defines a projection tensor since [itex]h_{\mu\nu}n^{\mu}=0[/itex] but I don't understand how this can be the induced metric on the brane.

For example, if we consider a flat spacetime in spherical coordinates:

[itex]ds^2=-dt^2+dr^2+r^2\Bigl(d\theta^2+sin^2\theta d\phi^2\Bigr)[/itex]

and we consider the surface defined by the equation [itex]r=a(t)[/itex], hence we have

[itex]ds^2=-\Bigl(1-\dot a^2\Bigr)dt^2+a^2\Bigl(d\theta^2+sin^2\theta d\phi^2\Bigr)[/itex]

which is for me the induced metric on the surface. But it doesn't match with the metric [itex]h_{\mu\nu}[/itex] where [itex]n_\mu=(0,1,0,0)[/itex]

which would give [itex]h_{00}=-1\neq -\Bigl(1-\dot a^2\Bigr)[/itex] ????????

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Induced metric on the brane

Loading...

Similar Threads - Induced metric brane | Date |
---|---|

I Some geometry questions re Swartzchild metric | Friday at 9:27 AM |

A Metric induced on Kerr event horizon | Apr 6, 2017 |

Sphere-Ellipsoid induced metrics | Dec 25, 2014 |

Does relativistic mass induce gravity? | Jul 1, 2010 |

Schwarzschild metric as induced metric | Jun 25, 2010 |

**Physics Forums - The Fusion of Science and Community**