Inequality

  • MHB
  • Thread starter solakis1
  • Start date
  • #1
solakis1
425
0
given $A>0$ find a $B>0$ such that:

For all $x>0$ and $x>B$ Then $|\frac{x}{x-\lfloor x^2\rfloor}|<A$
Do not use the concept of the limit
 

Answers and Replies

  • #2
solakis1
425
0
hint:[sp] $|\frac{x}{x-\lfloor x^2\rfloor}|$=$|\frac{1}{x}|.|\frac{1}{\frac{1}{x}-\frac{\lfloor x^2\rfloor}{x^2}}|$[/sp]
 

Suggested for: Inequality

Replies
13
Views
167
  • Last Post
Replies
1
Views
286
  • Last Post
Replies
4
Views
600
  • Last Post
Replies
0
Views
432
  • Last Post
Replies
2
Views
551
Replies
10
Views
611
  • Last Post
Replies
8
Views
978
  • Last Post
Replies
3
Views
577
  • Last Post
Replies
4
Views
738
  • Last Post
Replies
0
Views
426
Top