- #1
solakis1
- 425
- 0
given $A>0$ find a $B>0$ such that:
For all $x>0$ and $x>B$ Then $|\frac{x}{x-\lfloor x^2\rfloor}|<A$
Do not use the concept of the limit
For all $x>0$ and $x>B$ Then $|\frac{x}{x-\lfloor x^2\rfloor}|<A$
Do not use the concept of the limit