1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Inertial tensor remains diagonal during a shift along a principle axis

  1. Apr 10, 2016 #1
    In the middle of the below paragraph: "only if the shift vector ##R## is along one of the principal axes relative to the center of mass will the difference tensor be diagonal in that system." I suppose the difference tensor means new inertial tensor ##-## old inertial tensor.

    That means the new inertial tensor is also diagonal. Suppose we let the principal axis along which the shift happens be the ##x## axis. That means ##x_i## changes but ##I_{xy}## and ##I_{xz}## remain ##0##. By (5.7), that means that ##m_iy_i=0## and ##m_iz_i=0## for all values of ##x##, since the shift could be by any arbitrary amount in the ##x## direction.

    However, this intuitively does not seem to be true in general for an arbitrarily shaped object.

    Screen Shot 2016-04-11 at 12.52.01 am.png

    Screen Shot 2016-04-11 at 12.52.55 am.png

    Consider an object with a uniform cross section (drawn below). ##m_iy_i=0## (for all values of ##x##) means that for all points on line 1, ##\Sigma_i h_i=\Sigma_i d_i##, and ##m_ix_i=0## (for all values of ##y## [now we consider the shift along another principle axis, the ##y## axis]) means that for all points on line 2, ##\Sigma_i l_i=\Sigma_i r_i##. For these to be true, we must have tangent 1a and tangent 1b to be parallel to line 2, and also tangent 2a and tangent 2b to be parallel to line 1. But these seem unachievable in general for an arbitrarily shaped cross sections.

    image.jpeg
     
    Last edited: Apr 10, 2016
  2. jcsd
  3. Apr 15, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Inertial tensor remains diagonal during a shift along a principle axis
Loading...