# Infinite geometric series

## Homework Statement

hello this question is discussed in 2009 but it is closed now

If you invest £1000 on the first day of each year, and interest is paid at 5% on
your balance at the end of each year, how much money do you have after 25
years?

## Homework Equations

## S_N=\sum_{n=0}^{N-1} Ar^n##

where N is the last term
r is the common ratio & A is a constant

## S_N= a\frac{1-r^N}{1-r} ##

## The Attempt at a Solution

after 25 years i would set N=25 but this will give me a result of £47727. then i have to subtract £1000 because on the first day of each year i invest £1000 therefore i got a result of £46727

but this is the wrong answer

if i set N=26 i will get £51113 and then again subtract £1000
therefore i got a result of £50113 and this is the right answer

my question is why i must put N=26. isn't N the last term and equal to 25?
and is this way of solution right?

Related Precalculus Mathematics Homework Help News on Phys.org
BvU
Homework Helper
2019 Award
Can't follow your equations. "N is the last term"? Wouldn't N be the number of terms/years ?
And then after one year you don't have ##Ar^0## but ##Ar^1##.

Tip: Don't change the notation from one line to the next. A is A, not a.

## S_N= A\frac{1-r^N}{1-r} ## looks weird too. Don't you mean ##
S_N= Ar\frac{\ 1+r^N}{1+r}## so that after 1 year you do have Ar ?

--

• Pual Black
Ray Vickson
Homework Helper
Dearly Missed
Can't follow your equations. "N is the last term"? Wouldn't N be the number of terms/years ?
And then after one year you don't have ##Ar^0## but ##Ar^1##.

Tip: Don't change the notation from one line to the next. A is A, not a.

## S_N= A\frac{1-r^N}{1-r} ## looks weird too. Don't you mean ##
S_N= Ar\frac{\ 1+r^N}{1+r}## so that after 1 year you do have Ar ?

--
No, his formula is correct as written: ##\sum_{n=0}^N A r^n = A(r^N -1)/(r-1)## is a standard elementary algebra result. Of course, it also equals ##A(1-r^N)/(1-r)##.

• Pual Black
ehild
Homework Helper
No, his formula is correct as written: ##\sum_{n=0}^N A r^n = A(r^N -1)/(r-1)## is a standard elementary algebra result. Of course, it also equals ##A(1-r^N)/(1-r)##.
If you sum from 0 to N, it is N+1 elements. The correct formula is ##\sum_{n=0}^{N-1} A r^n = A(r^N -1)/(r-1)##

Last edited:
• Pual Black
Ray Vickson
Homework Helper
Dearly Missed
If you sum from 0 to N, it is N+1 element. The correct formula is ##\sum_{n=0}^{N-1} A r^n = A(r^N -1)/(r-1)##
Indeed: that was a typo on my part. I had intended to make the upper summation limit equal N-1, but somehow slipped up.

• Pual Black
BvU
Homework Helper
2019 Award
Sorry for the minus sign - weak moment.

Time to define what A stands for. My impression was that after one year the guy has ##Ar##, not ##
\sum_{n=0}^{0} A r^n = A(r^1 -1)/(r-1) = A##

Time to define what N stands for, too: at the begining of year 2, they guy has
##
\sum_{n=0}^{1} A r^n = A(r^2 -1)/(r-1) = A(r+1)## and he invests another A ?

I figured r = 1.05 and A = 1000 pounds. Where did I go all wrong ?

$$1000 \,{1.05^{26} - 1\over 1.05 -1} = 51113.45$$
$$1050 \,{1.05^{25} - 1\over 1.05 -1} = 50113.45$$ which OP considered the right answer .

The
all variables and given/known data
in the template is clearly useful. And includes the list of what values in the problem statement the symbols used stand for ... Last edited:
• Pual Black
Can't follow your equations. "N is the last term"? Wouldn't N be the number of terms/years ?
And then after one year you don't have ##Ar^0## but ##Ar^1##.

Tip: Don't change the notation from one line to the next. A is A, not a.

## S_N= A\frac{1-r^N}{1-r} ## looks weird too. Don't you mean ##
S_N= Ar\frac{\ 1+r^N}{1+r}## so that after 1 year you do have Ar ?

--
yes you are right N is the number of terms
and i get it now. first i invest £1000 so i have nothing at this moment after one year i have £1000*1.05= £1050

Ray Vickson
Homework Helper
Dearly Missed
yes you are right N is the number of terms
and i get it now. first i invest £1000 so i have nothing at this moment after one year i have £1000*1.05= £1050
$$F = A r + A r^2 + \cdots + A r^N = A r \sum_{n=0}^{N-1} r^n$$
• 