1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Infinite Limit

  1. Feb 25, 2006 #1
    How do I evaluate this limit?

    [tex]
    \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n
    [/tex]

    Is this the correct approach?

    [tex]
    {\rm{Let}} \; \; \; y = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{2}{3}} \right)^n
    [/tex]

    [tex]
    \ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {\left( {\frac{2}{3}} \right)^n } \right]
    [/tex]

    [tex]
    \ln y = \mathop {\lim }\limits_{n \to \infty } \left[ {n \cdot \ln \left( {\frac{2}{3}} \right)} \right]
    [/tex]

    I am stuck at this step. I don't see a way to manipulate the limit into a
    form that L'Hopital's Rule will apply. I know the limit evaluates to 0.
     
    Last edited: Feb 25, 2006
  2. jcsd
  3. Feb 25, 2006 #2

    benorin

    User Avatar
    Homework Helper

    No l'Hospital's rule needed. Since [tex]\frac{2}{3} < 1,\left( \frac{2}{3}\right) ^{n}\rightarrow 0 \mbox{ as }n\rightarrow\infty[/tex]
     
  4. Feb 25, 2006 #3

    VietDao29

    User Avatar
    Homework Helper

    You can continue by noticing that:
    [tex]\ln \left( \frac{2}{3} \right) < 0[/tex]
    So as [tex]n \rightarrow +\infty[/tex], [tex]n \star \ln \left( \frac{2}{3} \right) \rightarrow - \infty[/tex], right?
    So as [tex]n \rightarrow +\infty[/tex], [tex]\ln y \rightarrow - \infty[/tex]
    So what's [tex]y \rightarrow ?[/tex]
    -----------------
    Or as benorin has pointed out:
    If |a| < 1 then [tex]\lim_{n \rightarrow \infty} a ^ n = 0[/tex]
    If a = 1 then [tex]\lim_{n \rightarrow \infty} a ^ n = 1[/tex]
    Can you get this? :)
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...