1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Infinite Square Well

  1. Dec 16, 2008 #1
    1. The problem statement, all variables and given/known data
    Twelve nucleons are in a one dimensional infinite square well of length L = 3 fm. Using a mass of 1 u. What is the ground state energy of the system of 12 nucleons in the well if all the nucleons are neutrons so that there can only be 2 in each state.

    2. Relevant equations

    3. The attempt at a solution
    E = n^2 h^2 / ( 8 m L^2) (infinite square well)

    I'm not really sure what to do... If I say that n = 1. Then I get 22.96 MeV.
    I know that because of the exclusion principle there will be levels from n = 1 to n = 6 with 2 neutrons in each level.

    I don't know exactly what they mean by ground state? I would have thought that means when n = 1, but in this case it doesn't seem to be the case. Or even 22.96 Mev / 12 nucleons, but that also isn't the answer.
  2. jcsd
  3. Dec 16, 2008 #2
    Well, neutrons are fermions, so n can't only be 1 (Pauli exclusion principle). There have to be two neutrons in n = 1, two in n = 2, ... n = 6. Try working from here.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Infinite Square Well
  1. Infinite Square Well (Replies: 3)