Infinitesimal rotations

• A
Kashmir

Can anybody please help me to understand that why under infinitesimal rotation ##x1## transforms in the way as shown in equation 4-100?

This is from Goldstein's Classical Mechanics page chapter 5 and page 168 on the Kinematics of Rigid body motion.

Last edited:

Answers and Replies

Science Advisor
Homework Helper
Gold Member
2022 Award
https://www.physicsforums.com/attachments/292210

Can anybody please help me to understand that why under infinitesimal rotation ##x'_1## transforms in the way as shown ?

This is from Goldstein's Classical Mechanics page chapter 5 and page 168 on the Kinematics of Rigid body motion.
That link doesn't work.

Kashmir
Kashmir
That link doesn't work.
Thank you. Edited.

Science Advisor
Homework Helper
Gold Member
2022 Award
The way I would do it is to write out the rotation matrix for a rotation of ##\theta## about the ##x_1## axis. And apply this matrix to an arbitrary vector ##(x_1, x_2,x_3)##.

When ##\theta## is small, we have ##\cos \theta \approx 1##, ##\sin \theta \approx \theta##. If you apply those approximations you should get the limit for an infinitesimal rotation.

I think Goldstein is just using generic matric entries, rather than ##\cos \theta## and ##\sin \theta## explicity.

Kashmir
Kashmir
Wouldn't it be more general to apply these trigonometric limits for small angles directly into the rotation matrix here ##A=\left[\begin{array}{ccc}\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\ -\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \cdot \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right]## reducing to ##A=\left[\begin{array}{ccc}1-\phi \psi & \phi+\psi & \psi \theta \\ -\psi-\phi & -\psi \phi+1 & \theta \\\theta \phi & -\theta & 1\end{array}\right]## hence the required equation A-400 ?

Science Advisor
Homework Helper
Gold Member
2022 Award
Yes I got the idea. Thank you. Wouldn't it be more general to apply these trigonometric limits for small angles directly into the rotation matrix here ##A=\left[\begin{array}{ccc}\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\ -\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \cdot \sin \theta \\ \sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta\end{array}\right]## reducing to ##A=\left[\begin{array}{ccc}1-\phi \psi & \phi+\psi & \phi \theta \\ 4 \beta-\phi & -\psi \phi+1 & \theta \\ -\psi & -\theta & 1\end{array}\right## hence the required equation A-400 ?
We simply want to analyse infinitesimal rotations about the three coordinate axes. Those have a well-known simple form.

Kashmir
We simply want to analyse infinitesimal rotations about the three coordinate axes. Those have a well-known simple form.
I agree. We can also think like this:
Given a general rotation matrix A defined with the three Euler angles phi, theta and psi we can find the limit by letting all three go to zero and find that the infinitesimal rotation is
##A=\left[\begin{array}{ccc}1-\phi \psi & \phi+\psi & \psi \theta \\ -\psi-\phi & -\psi \phi+1 & \theta \\\theta \phi & -\theta & 1\end{array}\right] =I+e## exactly as the author writes at equation A-102 .

Science Advisor
Homework Helper
Gold Member
2022 Award
I agree. We can also think like this:
Given a general rotation matrix A defined with the three Euler angles phi, theta and psi we can find the limit by letting all three go to zero and find that the infinitesimal rotation is
##A=\left[\begin{array}{ccc}1-\phi \psi & \phi+\psi & \psi \theta \\ -\psi-\phi & -\psi \phi+1 & \theta \\\theta \phi & -\theta & 1\end{array}\right] =I+e## exactly as the author writes at equation A-102 .
Possibly. I don't have Goldstein, so I don't know where he's going with this. I might have misunderstood what he's trying to do.

Kashmir
Kashmir
Possibly. I don't have Goldstein, so I don't know where he's going with this. I might have misunderstood what he's trying to do.
Thank you for your help.