Whence evaluating the area under the curve(adsbygoogle = window.adsbygoogle || []).push({});

[tex]y=\frac{1}{x} \\\ \mbox{for} \\\ 1 \leq x < \infty [/tex]

it evaluates to [tex]\infty [/tex]

But when evaluating the volume using

[tex] Volume = \pi \int y^2 dx \\\ \mbox{on} \\\ a \leq x < b [/tex]

hence

[tex] Volume = \pi \int \frac{1}{x^2} \\dx [/tex]

hence

[tex] Volume = \pi [-\ \frac{1}{x}] \\\ \mbox{on} \\\ 1 \leq x < \infty [/tex]

hence

[tex] Volume = \pi [0 - - 1] = \pi [/tex]

A finite value!

Im having trouble comprehending such concepts and ideas.

Can someone please explain?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Infinte Area but finite Volume

**Physics Forums | Science Articles, Homework Help, Discussion**