- #1
- 1,395
- 0
prove that..
[tex]
x-\frac{x^3}{6}+\frac{x^5}{120}>\sin x\\
[/tex]
[tex]
R_5=\frac{f^{5}(c)x^5}{5!}
[/tex]
i need to prove that the remainder is negative .
[tex]
\sin x=x-\frac{x^3}{6}+\frac{x^5}{120}+R_5
[/tex]
[tex]
R_5=\frac{cos(c)x^5}{5!}
[/tex]
[tex]
x-\frac{x^3}{6}+\frac{x^5}{120}>\sin x\\
[/tex]
[tex]
R_5=\frac{f^{5}(c)x^5}{5!}
[/tex]
i need to prove that the remainder is negative .
[tex]
\sin x=x-\frac{x^3}{6}+\frac{x^5}{120}+R_5
[/tex]
[tex]
R_5=\frac{cos(c)x^5}{5!}
[/tex]