Inner products

physicsss

Suppose that A is a square. Show that A is invertible if and only if A^T*A is invertible.

I know that if A is an m X n matrix, m>=n, and rkA=n, then the n X n matrix A^T*A is invertible, and that rk(A^TA)= rkA, but I'm still not sure how to start the proof...

TIA

Related Linear and Abstract Algebra News on Phys.org

robphy

Homework Helper
Gold Member
Can you use the determinant?

physicsss

Yes, but how does that help me?

matt grime

Homework Helper
M is invertible if and only if det(M) is not zero.

det(M) is the same as det(M^t)

det(MN)=det(M)det(N)

if x and y are real (or complex) numbers and xy=0 then one of x or y is zero.

Muzza

det(A) = det(A^t) and det(AB) = det(A)det(B) (for all matrices A, B of the proper size).

If A is invertible, then det(A) != 0, so that det(A^t) != 0, and therefore det(AA^t) = det(A)det(A^t) != 0, i.e. AA^t is invertible.

The converse is similar.

matt grime

Homework Helper
snap. why was the title inner products though?

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving