Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Instantaneous velocity

  1. Aug 25, 2004 #1
    I know nothing about Instantaneous Velocity. Can you give me the very simple form of explanation? Is instantaneous velocity an exact velocity at an exact point?
     
  2. jcsd
  3. Aug 25, 2004 #2

    mathman

    User Avatar
    Science Advisor
    Gold Member


    Yes. One way of approaching it is through elementary calculus. Consider a small interval around the point of interest, and divide the interval by the time it takes to cross it. This is the average velocity. The limit as the interval goes to zero is the instantaneous velocity. If you use the length of the interval, you get speed.
     
  4. Aug 25, 2004 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    That was, in fact, the impetus for the creation of calculus. We know that F= ma but if gravitational force depends upon distance, then we should be able to calculate the force at that instant- but ma is not defined at a distance, since acceleration (change in velocity) requires a time to change! In other words, people trying to figure out what kept planets in their orbits had to come to the conclusion that "F= ma" made no sense! It required the concept of limits and the derivative to solve that problem.
     
  5. Aug 25, 2004 #4

    robphy

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    [Instantaneous] Speed is the magnitude of the [instantaneous] velocity vector.

    EngTechno,
    Was there a problem with the answers provided here [thread]40372[/thread]?
     
  6. Aug 26, 2004 #5
    Another way to think of instantaneous velocity the rate displacement is changing at a given instant.
     
  7. Aug 26, 2004 #6

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Except that, strictly speaking, since "change" itself requires a time interval, nothing CAN change "at a given instant"! That's why you need to work with limits in order to define "change at a given instant".
     
  8. Aug 26, 2004 #7

    robphy

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    This discussion reminds me of a logical problem I see with the textbook development of velocity.

    It seems that most texts follow the scheme:
    first, "average velocity"
    then, "[instantaneous] velocity".

    It's strange to me to define the "average of a quantity" before defining the actual quantity.

    In addition, it seems strange to me that there is little discussion that one is really doing a time-weighted-average of velocity and not a straight-average of velocity.
    For a piecewise constant-velocity trip,
    [tex]v_{avg} \equiv \frac{\int v\ dt}{\int dt}=
    \frac{v_1\Delta t_1 + v_2\Delta t_2 + \cdots + v_n\Delta t_n}
    {\Delta t_1+\Delta t_2+\cdots+\Delta t_n}
    =
    \frac{\Delta x_1 + \Delta x_2 + \cdots + \Delta x_n}
    {\Delta t_1+\Delta t_2+\cdots+\Delta t_n}
    =\frac{\Delta x}{\Delta t}
    [/tex]
     
  9. Aug 27, 2004 #8
    This may sound a little naive, but if time and space were Planck-quantised, does it still make sense to speak of "instantaneous" velocity? The limit can't go to zero in this case.
     
  10. Aug 27, 2004 #9

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    That's a physics question, not a math question! :wink:
    It would still make sense to treat, in certain problems, velocity as distance and time interval were continuous.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?