- #1

- 6

- 1

Here were my steps:

1) = 4 ∫ [1 / (4x^2 + 4x + 65)] dx

2) = 4 ∫ [1 / (4x^2 + 4x + 1 + 64)] dx

3) = 4 ∫ [1 / ((2x+1)^2 + 64)] dx ;

Then I applied the formula: ∫ [1 / √(a^2 + u^2)] dx = (1/a)arctan(u/a) + C;

4) = (4)(1/8)arctan [(2x+1) / (√64)] + C

5)

**=**(1/2)arctan [(2x+1) / 8] + C

**My answer: (1/2)arctan [(2x+1) / 8] + C**

The correct answer: (1/4)arctan[(2x+1) / 8] + C

The correct answer: (1/4)arctan[(2x+1) / 8] + C